1. Riemannian metrics, isometries, Lie derivatives

1.1. Equivalence of definitions of a surface.

Let $\Sigma \subset \mathbb{R}^{3}$ be a smooth surface. Show that for all $p \in \Sigma$ there exists an open neighborhood $U \subset \mathbb{R}^{3}$ of p so that $\Sigma \cap U$ is the graph of a smooth function $F: V \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$, i.e. $\Sigma \cap U=\left\{\left(x^{1}, x^{2}, F\left(x^{1}, x^{2}\right)\right\}\right.$ or $\left\{\left(x^{1}, F\left(x^{1}, x^{3}\right), x^{3}\right)\right\}$ or $\left\{\left(F\left(x^{2}, x^{3}\right), x^{2}, x^{3}\right)\right\}$.

1.2. Lie derivative.

Let M be a smooth manifold.

1. Let $D: \mathcal{C}^{\infty}(M) \rightarrow \mathcal{C}^{\infty}(M)$ be a derivation, i.e. D is \mathbb{R}-linear and satisfies $D(f g)=$ $f D(g)+g D(f)$ for all $f, g \in \mathcal{C}^{\infty}(M)$. Show that there exists a unique vector field $V \in \Gamma(T M)$ so that $D(f)=V f$ for all $f \in \mathcal{C}^{\infty}(M)$.
2. Let $V, W \in \Gamma(T M)$. Show that $[V, W] \in \Gamma(T M)$ where $[V, W]: f \mapsto V W f-W V f$. Express V in a local chart (φ, U) as $V=V^{i} \partial_{\varphi^{i}}$ where $V^{i} \in \mathcal{C}^{\infty}(\varphi(U))$, similarly $W=W^{j} \partial_{\varphi^{j}}$. Is $[V, W]$ tensorial in V, i.e. $\mathcal{C}^{\infty}(M)$-linear in V ?

1.3. Existence of Riemannian metrics.

Let M be a smooth manifold. Show that there exists a Riemannian metric g on M. Hint. Use a partition of unity. Carefully check that your construction yields something positive definite!

1.4. Isometries.

1. Show that the map

$$
\left((0, \infty) \times(0,2 \pi), \mathrm{d} r^{2}+r^{2} \mathrm{~d} \phi^{2}\right) \ni(r, \phi) \stackrel{F}{\mapsto}(r \cos \phi, r \sin \phi) \in\left(\mathbb{R}^{2},\left(\mathrm{~d} x^{1}\right)^{2}+\left(\mathrm{d} x^{2}\right)^{2}\right)
$$ is a local isometry.

2. Show that Möbius transformations $z \stackrel{A}{\mapsto} \frac{a z+b}{c z+d}, a, b, c, d \in \mathbb{R}, a d-b c=1$, are isometries of $\left(\mathbb{H}^{2}, g\right)$ where we define $\mathbb{H}^{2}:=\{z \in \mathbb{C}: \Im z>0\}$ and $g_{x+i y}=y^{-2}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}\right)$. Show that $\left(\mathbb{H}^{2}, g\right)$ is homogeneous and isotropic.

1. Solutions

Solution of 1.1: Fix a point $p \in \Sigma$. Let $x_{i}: \Sigma \rightarrow \mathbb{R}$ denote the restriction of the standard Euclidean ambient coordinates (that is for $\left.p=\left(p_{1}, p_{2}, p_{3}\right), x_{i}(p)=p_{i} \in \mathbb{R}\right)$.
Claim: given $p \in \Sigma$ there exists a pair $(i, j), i \neq j, 1 \leq 1, j \leq 3$ of coordinates such that $\varphi(i, j)=\left(x_{i}, x_{j}\right): \Sigma \rightarrow \mathbb{R}^{2}$ is a smooth chart.
Proof of claim: Given the tangent space $T_{p} \Sigma \subset \mathbb{R}^{3}$ there exist (i, j) as above such that the orthogonal projection : $T_{p} \Sigma \rightarrow \operatorname{span}\left(e_{i}, e_{j}\right)$ is bijective. (Here e_{i}, e_{j} denote the standard coordinate vectors in \mathbb{R}^{3}). The corresponding chart $\varphi(i, j)$ has rank 2 at p and by the Implicit Function Theorem it is a local diffeomorphism, hence a chart. Denote by $U \subset \Sigma$ the open set on which $\varphi(i, j)$ is a diffeomorphism.
Pick the chart $\varphi(i, j)$ given above. Let $k \neq i, j$ be such that e_{k} is orthogonal to $\operatorname{span}\left(e_{i}, e_{j}\right)$. Then, denoting by $\left(y_{1}, y_{2}\right)$ the coordinates of $\operatorname{span}\left(e_{i}, e_{j}\right)$, and defining the function $F: \varphi(i, j)(U) \rightarrow \mathbb{R}$ as $F\left(y_{1}, y_{2}\right)=x_{3}\left(\varphi(i, j)^{-1}\left(y_{1}, y_{2}\right)\right)$,

$$
\left\{\left(y_{1}, y_{2}, F\left(y_{1}, y_{2}\right)\right) \mid\left(y_{1}, y_{2}\right) \in \varphi(i, j)(U)\right\}=\Sigma \cap U
$$

Remarks: $\operatorname{dim}(\Sigma)=2$ does not play a role in the statement, one can prove in the same way that embedded smooth surfaces are locally a graph.
Bonus: how would the statement need to be modified if the surface is just assumed to be immersed?

Solution of 1.2: Recall that for a vector field $V \in \Gamma(T M)$, a point $p \in M$ and a chart $\varphi: U \rightarrow \mathbb{R}^{m}$ satisfying $\varphi(p)=0$, we write $V_{p}=\left.v^{i} \frac{\partial}{\partial \varphi_{i}}\right|_{p}$ and

$$
V f(p)=\left.\frac{d}{d t}\right|_{t=0}\left(f \circ \varphi^{-1}\right)(t v) \in \mathbb{R} .
$$

Choosing $f=\varphi_{i}$,

$$
V \varphi_{i}(p)=v^{i}
$$

This motivates the following definition: given a derivation D, on the chart domain U set

$$
v_{D}^{i}(q)=D\left(\varphi^{i}\right)(q) \text { for all } q \in U .
$$

and

$$
V_{D}(q)=\left.v_{D}^{i}(q) \frac{\partial}{\partial \varphi_{i}}\right|_{q}
$$

Then, for $f \in C^{\infty}(U)$, and assuming for now $U \subset \mathbb{R}^{m}$ is open and convex (not really
needed), for $0, x \in U$, the function f can be expressed as a sum:

$$
f(x)=f(0)+x^{i}(x) g_{i}, \quad g_{i}=\frac{\partial f}{\partial x_{i}}(0) i=1, \ldots, m
$$

Applying the derivation D, using its properties and letting $x \rightarrow 0$,

$$
D f(0)=\left(D x^{i}\right)(0) g_{i}=v_{D}^{i}(0) \frac{\partial f}{\partial x_{i}}(0)
$$

Since the statement is translation invariant, we proved so far that

$$
D=v_{D}^{i} \frac{\partial}{\partial x_{i}}=: V_{D} \text { on } U \subset \mathbb{R}^{m}
$$

that is the derivation D is given by $V=V_{D}$ on U. To obtain the result on $U \subset M$ and then globally on M, use the fact that the derivation on M can be pulled back to a derivation on $U \subset \mathbb{R}^{m}$ using a chart and a partition of unity.
Uniqueness: Assume $D=V_{1}=V_{2}$ for two vector fields $V_{1}, V_{2} \in \Gamma(T M)$. Then locally in a coordinate chart, $v_{1}^{i} \frac{\partial}{\partial x_{i}}=v_{2}^{i} \frac{\partial}{\partial x_{i}}$, which determines the vector field uniquely, i.e. $V_{1}=V_{2}$.

Part 2. By part 1, we know that the space of derivations is in 1-to-1 correspondence with the space of smooth vector fields (although strictly speaking, we did not show the easier implication that vector fields are derivations in part 1). To show $[V, W] \in \gamma(T M)$ it suffices to show that it satisfies the derivation property:

$$
\begin{aligned}
{[V, W](f g) } & =V W(f g)-W V(f g)=V(W(f) g+f W(g))-W(V(f) g+f V(g)) \\
& =V(W(f)) g+f V(W(g))-f W(V(g))-W(V(f)) g \\
& =([V, W] f)(g)+f([V, W] g),
\end{aligned}
$$

we conclude $[V, W] \in \Gamma(T M)$.
The lie bracket of $h V$ and W is given by

$$
\begin{aligned}
{[h V, W](f) } & =h V(W(f))-W(h V(f))=h V(W(f))-W(h) V(f)-h W(V(f)) \\
& =h[V, W](f)-W(h) V(f),
\end{aligned}
$$

and it is therefore not tensorial in V !.
To express the Lie bracket in local coordinates, pick a chart $\varphi: U \rightarrow \mathbb{R}^{m}$, express
$W=W^{i} \partial_{x_{i}}$ and $V=V^{i} \partial_{x_{i}}$ and compute the coefficients $[V, W]^{i}=[V, W]\left(x^{i}\right)$

$$
[V, W]\left(x^{k}\right)=\left(V^{j} \partial_{j} W^{i}-W^{j} \partial_{j} V^{i}\right) \delta_{i k}=V^{j} \partial_{j} W^{k}-W^{j} \partial_{j} V^{k}
$$

Solution of 1.3: Let $\left(\rho_{\alpha}, U_{\alpha}\right)_{\alpha}$ be a locally finite partition of unity, that is $\operatorname{Supp}\left(\rho_{\alpha}\right) \subset U_{\alpha}$ and $\sum_{\alpha} \rho_{\alpha}(x)=1$ only has finitely many non-zero elements for every fixed $x \in M$. Let $\varphi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{m}$ be a smooth atlas for the manifold M (notice that we can choose U_{α} the cover coming from the partition of unity by refining the partition). Define, for $v, w \in T_{x} M$, $x \in U_{\alpha}$,

$$
g_{\alpha, x}(v, w)=\left\langle d \varphi_{\alpha}(x)[v], d \varphi_{\alpha}(x)[w]\right\rangle .
$$

Recall that by definition, a Riemannian metric is a smooth (in x) positive definite symmetric bilinear form. The definition above, together with the fact that $d \varphi(x)$ is an invertible matrix for every x, provides a Riemannian metric on U_{α}. It remains to show that the g_{α} can be "glued" together using the partition of unity. Define for vector fields $V, W \in \Gamma(T M)$

$$
g(V, W)(x)=\sum_{\alpha} g_{\alpha}(V(x), W(x))
$$

Positive definiteness: $g(v, v)(x)=\sum_{\alpha=1}^{K_{x}} \rho_{\alpha}(x) g_{\alpha}(v, v)>0$, since every g_{α} is positive definite and $\rho_{\alpha}>0$ for the indices $\alpha=1, \ldots, K_{x}$ (depending on x).
The biliearity as well as the smoothness carry over from the g_{α} given the smoothness of the partition of unity and the fact that the g_{α} appear linearly in the definition of g.

Solution of 1.4: We pick the local basis $\partial_{r}, \partial_{\varphi}$ of $T M$. By bilinearity it is enough to check that

$$
\begin{gathered}
g_{2}\left(d F\left(\partial_{r}\right), D F\left(\partial_{\varphi}\right)\right)=g_{1}\left(\partial_{r}, \partial_{\varphi}\right)=0 \\
g_{2}\left(d F\left(\partial_{r}\right), D F\left(\partial_{r}\right)\right)=g_{1}\left(\partial_{r}, \partial_{r}\right)=1 \\
g_{2}\left(d F\left(\partial_{\varphi}\right), D F\left(\partial_{\varphi}\right)\right)=g_{1}\left(\partial_{\varphi}, \partial_{\varphi}\right)=r^{2}
\end{gathered}
$$

We compute

$$
D F\left(\partial_{r}\right)=(\cos (\varphi), \sin (\varphi)) \quad D F\left(\partial_{\varphi}\right)=(-r \sin (\varphi), r \cos (\varphi)),
$$

the three identities to be verified follow.
Part 2.

Consider $w=A(z)$. Then since $a d-b c=1$,

$$
d w=\frac{d z}{(c z+d)^{2}}
$$

and

$$
\operatorname{Im}(w)=\frac{z-\bar{z}}{(c z+d)(c \bar{z}+d)}
$$

Therefore,

$$
y^{-2}\left(d x^{2}+d y^{2}\right)=-4 \frac{d z d \bar{z}}{(z-\bar{z})^{2}}=-4 \frac{d w d \bar{w}}{(w-\bar{w})^{2}}
$$

and this shows that the Möbius transformations are local isometries. To prove that they are global it suffices to check that they are bijecive, with inverse given by $f^{-1}(z)=\frac{d z-b}{-c z+a}$. To prove that \mathbb{H}^{2} is homogeneous, it is enough to prove that $f_{t}(z)=t z$ and $g_{t}(z)=z+t$ are isometries. Then, since composition of isometries is still an isometry, for any given two points $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ in \mathbb{H}^{2}, the map

$$
A_{x y}:=g_{y_{1}-\frac{y_{2} x_{1}}{x_{2}}} \circ f_{\frac{y_{2}}{x_{2}}}
$$

is an isometry and satisfies $A(x)=y$. This proves that the hyperbolic plane is homogeneous.

