10. Hadamard manifolds

10.1. Geodesics in Hadamard manifolds.

Let γ be an isometry of a Hadamard manifold (M, g). Show that $Min(\gamma)$ is closed, geodesically convex (i.e. if $c: [0, 1] \to Min(\gamma)$ is a geodesic with $c(0), c(1) \in Min(\gamma)$, then also $c(t) \in Min(\gamma)$ for all $t \in [0, 1]$, and γ -invariant.

10.2. "Uniqueness" and symmetries of hyperbolic space.

Prove that if M is a n-dimensional Riemannian manifold satisfying properties

- 1. for any given point all geodesic rays x(t), $t \ge 0$ emanating from it are minimizing up to arbitrarily large values of t > 0 (note that this is stronger than geodesic completeness).
- 2. the sectional curvatures are constantly equal to -1,

and $p \in M$ then \exp_p induces an isometry between \mathbb{R}^n with metric

$$g(w,w) = \left(w \cdot \frac{x}{|x|}\right)^2 + \left(|w|^2 - \left(w \cdot \frac{x}{|x|}\right)^2\right) \frac{\sinh^2|x|}{|x|^2} \tag{1}$$

and M. Deduce that given any two points p,q in the hyperbolic space \mathbb{H} and any isometry H between their tangent spaces $T\mathbb{H}_p \to T\mathbb{H}_q$ there is a unique isometry $f: \mathbb{H} \to \mathbb{H}$ such that f(p) = q and $df_p = H$.

10.3. Two dimensional Hadamard manifolds.

Let (M, g) be a two dimensional Hadamard manifold. For fixed point $p \in M$ and isometry $H: \mathbb{R}^2 \to TM_p$, consider $(\mathbb{R}^2, \overline{g})$ where $\overline{g} := (\exp_p \circ H)^*g$.

1. Show that \overline{q} is of the form

$$\overline{g}_x(v,w) := \left(v \cdot \frac{x}{|x|}\right) \left(w \cdot \frac{x}{|x|}\right) + \frac{f^2(x)}{|x|^2} \left(v \cdot w - \left(v \cdot \frac{x}{|x|}\right) \left(w \cdot \frac{x}{|x|}\right)\right),\tag{2}$$

where $f^2(x)/|x|^2$ is smooth (also at x=0) and has limit 1 as $x\to 0$, and where $t\mapsto f(tx)$ is nonnegative and convex for any fixed $x\in\mathbb{R}^2\setminus\{0\}$.

2. Reciprocally, show that \mathbb{R}^2 endowed with any metric \overline{g} satisfying the properties established in 1. —and such that $g_x(v, w)$ extends to a smooth metric across x = 0—gives a model of a Hadamard manifold (simply connected with nonpositive sectional curvature at all points).

10.4. Asymptotic expansion of the circumference.

Let M be a manifold, $E \subset TM_p$ a linear 2-plane and $\gamma_r \subset E$ a circle with center 0 and radius r > 0 sufficiently small. Show that

$$L(\exp(\gamma_r)) = 2\pi \left(r - \frac{\sec(E)}{6}r^3 + \mathcal{O}(r^4)\right)$$

for $r \to 0$.

10. Solutions

Solution of 10.1:

Recall that $Min(\gamma)$ was introduced in Definition 8.5 and it is the set of points that minimizes the displacement function for the given isometry γ :

$$\operatorname{Min}(\gamma) = \{ p \in M \mid d_{\gamma}(p) = \operatorname{dist}(p, \gamma(p)) = \inf_{q \in M} d_{\gamma}(q) \equiv |\gamma|.$$

Let us start by showing that it is closed:

Assume $p_k \in \text{Min}(\gamma)$ is a sequence of points converging to $p_k \to p \in M$. Then

$$d_{\gamma}(p) = d_{\gamma}(p_k) \equiv |\gamma| \implies p \in \text{Min}(\gamma).$$

Next we prove γ -invariance:

Let $p \in Min(\gamma)$. Then, since isometries preserve distance,

$$d_{\gamma}(\gamma(p)) = \operatorname{dist}(\gamma(p), \gamma(\gamma(p))) = \operatorname{dist}(p, \gamma(p)) = |\gamma| \implies \gamma(p) \in \operatorname{Min}(\gamma).$$

It remains to show convexity:

Let c be a geodesic with $c(0), c(1) \in \text{Min}(\gamma)$. Then $\gamma(c(t)) =: d(t)$ is also a geodesic. By Lemma 8.10, g(t) := dist(c(t), d(t)) is convex, and by assumption on c(0), c(1), $g(0) = g(1) = |\gamma|$, which implies $g(t) \equiv |\gamma|$ and hence $c(t) \in \text{Min}(\gamma)$ for $0 \le t \le 1$.

Solution of 10.2:Let c(t) be a geodesic on M and Y(t) a Jacobi field. Take E(t) parallel and orthogonal to $\dot{c}(t)$. Then, since M has sectional curvatures constantly equal to -1, Y = fE satisfies the Jacobi field equation provided f'' - f = 0, which has solutions cosh and sinh.

Notice that $t \mapsto (\exp_p)((v+w)t)$ gives a geodesic for all , for all fixed $v, w \in TM_p$. Hence, the variation $Y(t) = d(exp_p)_{vt}(wt) = td(exp_p)_{vt}(w)$ is a Jacobi field. Hence As shown in

the lecture, this fact and Gauss' lemma allows us to compute $|d(\exp_n)_v(w)|$ as

$$|d(\exp_p)_v(w)|^2 = (w \cdot \frac{v}{v})^2 + \left(|w|^2 - \left(w \cdot \frac{v}{|v|}\right)^2\right) \frac{\sinh^2|v|}{|v|^2}.$$

In other words the metric of M in normal coordinates x is given by (1).

Also, since by assumption M satisfies the property c) in the previous excercise we obtain that the map $\exp_p: TM_p \to M$ is injective (and a diffeomorphism). It follows that M is isometric to \mathbb{R}^n with metric g given by (1).

Finally, since we can replace p by any other point q and the expression of g in local coordinate given by \exp_q will be the same, and since the metric is clearly rotationally invariant, it follows that for any isometry between $T\mathbb{H}_p \to T\mathbb{H}_q$ there is a unique isometry $f: \mathbb{H} \to \mathbb{H}$ such that f(p) = q and $df_p = H$ (with is given by $(\exp_q) \circ H \circ (\exp_p)^{-1}$.

Solution of 10.3:(a) Fix $x \in \mathbb{R}^2 \setminus 0$ and let $c_x(t)$ be a geodesic emanating from p, with unit initial velocity $H(x)/|x| \in TM_p$. Let E(t) be a parallel unit vector field along c_x which is orthogonal to $c'_x(t)$. Notice that $Y := \phi(t)E$ is a Jacobi field if, and only if, $\phi'' + (K \circ c_x)\phi = 0$. Now, for fixed $x \neq 0$ and let $w \in \mathbb{R}^2$ be perpendicular to x, we have

$$Y(t) := d(\exp_p \circ H)_{tx/|x|}(tw)$$

is a Jacobi field satisfying Y(0) = 0 and Y'(0) = w. Hence, by definition pullback metric $\overline{g} := (\exp_p \circ H)^* g$, for t > 0 we have

$$\overline{g}_{tx/|x|}(w, w) = g\Big(d(\exp_p \circ H)_{tx/|x|}(w), d(\exp_p \circ H)_{tx/|x|}(w)\Big)
= t^{-2}g\Big(Y(t), Y(t)\Big) = t^{-2}g\Big(|w|\phi E(t), |w|\phi E(t)\Big) = (\phi/t)^2|w|^2,$$

where ϕ is the unique solution of $\phi'' + (K \circ c_x)\phi = 0$ with initial conditition $\phi(0) = 0$ and $\phi'(0) = 1$.

Hence, setting t = |x| in the equation above and defining $f(x) = \phi(|x|)$ as the unique solution $\phi'' + (K \circ c_x)\phi = 0$ with $\phi(0) = 0$ and $\phi'(0) = 1$ evaluated at time t = |x|, we obtain

$$\overline{g}_x(w,w) = (f(x)/|x|)^2|w|^2,$$

Using that from Gauss' lemma

$$\overline{q}_r(v,w) = v \cdot w$$

whenever v parallel to x (and w is any vector), we obtain (2).

Finally observer that $\phi'' = -(K \circ c_x)\phi \ge 0$ implies that ϕ is convex (and hence so is $t \mapsto f(tx)$). Also, by l'Hopital's rule, $\lim_{t\to 0} \phi(t)/t = \phi'(0) = 1$ and hence the limit of $f^2(x)/|x|^2 \to 1$ as $x \to 0$.

(b) Consider now \mathbb{R}^2 endowed with a metric of the form (2). Take polar coordinates (r, θ) in $\mathbb{R}^2 \setminus 0$. Notice that coordinates the metric is of the form

$$(g_{i,j}) = \left(\begin{array}{cc} 1 & 0 \\ 0 & E \end{array}\right)$$

where $E = E(r, \theta) = \overline{g}(\partial_{\theta}, \partial_{\theta}) = f^2(r \cos \theta, r \sin \theta)$.

The condition that f is convex along rays from 0 reads $(\sqrt{E})_{11} \geq 0$.

In order to compute the curvature, let us compute the Chistoffel symbols (we still use polar coordinates). The only nonzero ones are:

$$\Gamma_{22}^2 = \frac{E_2}{2E}, \quad \Gamma_{12}^2 = \Gamma_{12}^2 = \frac{E_1}{2E}, \quad \Gamma_{22}^1 = \frac{-E_1}{2}$$

Hence, direct computation shows:

$$K = \frac{E_1^2}{4E^2} - \frac{E_{11}}{2E} = -\frac{\left(\sqrt{E}\right)_{11}}{\sqrt{E}} \le 0.$$

Solution of 10.4: Let $v, w \in TM_p$ be an orthonormal basis of E. Then the circle can be parametrized by $\gamma_r(\varphi) = r(v\cos\varphi + w\sin\varphi)$. For some fixed $\varphi_0 \in [0, 2\pi]$, consider the Jacobi field $Y_{\varphi_0}(r)$ associated to the geodesic variation $V(\varphi, r) := \exp(\gamma_r(\varphi))$ of the geodesic $c_{\varphi_0}(r) := \exp(\gamma_r(\varphi_0))$. Then it holds

$$L(\exp(\gamma_r)) = \int_0^{2\pi} |Y_{\varphi}(r)| \, d\varphi.$$

We will now compute the Taylor expansion for $|Y_0(r)|$, all other cases are similar. We have $Y_0(0) = 0$ and $Y'_0(0) = w$. From the Jacobi equation we also get

$$Y_0''(0) = -R(Y_0, c_0') c_0'\Big|_{r=0} = 0.$$

P. Hintz, M. Gianocca

Now taking the derivative of the Jacobi equation, we get

$$Y_0'''(0) = -\frac{D}{dr} R(Y_0, c_0') c_0' \Big|_{r=0} = -R(Y_0', c_0') c_0' \Big|_{r=0} = -R(w, v)v.$$

It follows that

$$|Y_0(r)| = r - \frac{R(w, v, w, v)}{6} r^3 + \mathcal{O}(r^4).$$

Therefore, we finally get

$$L(\exp(\gamma_r)) = \int_0^{2\pi} \left(r - \frac{\sec(E)}{6} r^3 + \mathcal{O}(r^4) \right) d\varphi = 2\pi \left(r - \frac{\sec(E)}{6} r^3 + \mathcal{O}(r^4) \right),$$

as it was to show.

due: May 10, 2024