12. Differential forms, part two

12.1. Application of Stokes' theorem.

Let M be a smooth oriented manifold. Write $\omega \in \Omega^{m}(M)$ for the volume form of a Riemannian metric g on M. Let $V \in \Gamma(T M)$.

1. Show that $d\left(i_{V} \omega\right)=\operatorname{div}(V) \omega$.
2. Write h for the metric on ∂M induced by g via pullback along the inclusion map $i: \partial M \hookrightarrow M$, and write $\sigma \in \Omega^{m-1}(\partial M)$ for the volume form of $(\partial M, h)$. Show that $\sigma=i_{N} \omega$ where $N \in \mathcal{C}^{\infty}\left(\partial M ; T_{\partial M} M\right)$ is an outward pointing unit normal vector field (i.e. $g(N, N)=1$ and $N \perp T \partial M)$. Prove also the existence of such an N.
3. Prove the divergence theorem: $\int_{M} \operatorname{div}_{g}(V) \omega=\int_{\partial M} g(V, N) \sigma$.

12.2. Poincare Lemma.

The goal of this exercise is to prove the Poincaré lemma for compactly supported cohomology in the following form: for a smooth manifold M, we have $H_{\mathrm{c}}^{k+1}(\mathbb{R} \times M) \cong H_{\mathrm{c}}^{k}(M)$.

1. Define the map $\pi_{*}: \Omega^{k+1}(\mathbb{R} \times M) \rightarrow \Omega^{k}(M)$, given by integration on the fibers, as follows: for $\omega=\mathrm{d} t \wedge \omega_{0}+\omega_{1}$ with $\omega_{j}=\sum_{I} \omega_{j, I}(t, x) \mathrm{d} x^{I}, j=0,1$, where the $\omega_{j, I}$ have compact support in t, set

$$
\pi_{*} \omega:=\int_{-\infty}^{\infty} \omega_{0}(t) \mathrm{d} t:=\sum_{I}\left(\int_{-\infty}^{\infty} \omega_{0, I}(t, x) \mathrm{d} t\right) \mathrm{d} x^{I} .
$$

Show that $\pi_{*} \mathrm{~d}=\mathrm{d} \pi_{*}$. Therefore, π_{*} induces a map in cohomology which we denote

$$
\pi_{*}: H^{*+1}(\mathbb{R} \times M) \rightarrow H^{*}(M) .
$$

2. Let $e=e(t) \mathrm{d} t$ where $e \in \mathcal{C}_{\mathrm{c}}^{\infty}(\mathbb{R})$ has total integral 1. Define the map

$$
e_{*}: \Omega_{\mathrm{c}}^{*}(M) \rightarrow \Omega_{\mathrm{c}}^{*+1}(M \times \mathbb{R}), \quad \phi \mapsto \phi \wedge e .
$$

Show that e_{*} induces a map in cohomology which we denote also by

$$
e_{*}: H^{*}(M) \rightarrow H^{*+1}(\mathbb{R} \times M)
$$

3. Show that $\pi_{*} \circ e_{*}=\mathrm{I} d$ on $H^{*}(M)$.
4. Show that $e_{*} \circ \pi_{*}=\mathrm{I} d$ on $H^{*}\left(\mathbb{R}^{\times} M\right)$ as follows. Define the map

$$
\begin{aligned}
K & : \Omega_{\mathrm{c}}^{*}(\mathbb{R} \times M) \rightarrow \Omega_{\mathrm{c}}^{*-1}(\mathbb{R} \times M), \\
& K\left(f \pi^{*} \phi\right):=0 \quad\left(f \in \mathcal{C}_{\mathrm{c}}^{\infty}(\mathbb{R} \times M), \phi \in \Omega_{\mathrm{c}}^{k}(M)\right), \\
& K\left(f \pi^{*} \phi \wedge \mathrm{~d} t\right)(t)=\left(\pi^{*} \phi\right) \int_{-\infty}^{t} f-\phi A(t) \int_{-\infty}^{\infty} f
\end{aligned}
$$

where $A(t)=\int_{-\infty}^{t} e$. Verify that

$$
1-e_{*} \pi_{*}=(-1)^{k}(\mathrm{~d} K-K \mathrm{~d}) \quad \text { on } \quad \Omega_{\mathrm{c}}^{k+1}(\mathbb{R} \times M)
$$

and use this to conclude the argument.

12.3. Cohomology of the sphere.

The goal of this exercise is to show that the cohomology groups of \mathbb{S}^{m} are given by $H^{k}\left(\mathbb{S}^{m}\right) \cong \mathbb{R}$ for $k=0, m$, and 0 for all other k. Proceed by induction on m using the Mayer-Vietoris sequence. (The case $m=1$ may be assumed, as it was discussed in class.)

12.4. Metrics of negative sectional curvature.

The goal of this exercise is to prove the following theorem: Let M and N be compact, connected, smooth manifolds of positive dimension. Then $M \times N$ does not admit a metric of negative sectional curvature.

Proceed as follows:

1. Show that at least one of the factors M or N is simply connected.
2. Assume that M is simply connected. Show that the universal covering space of $M \times N$ is $M \times \widetilde{N} \cong \mathbb{R}^{m+n}$ where \widetilde{N} is the universal covering space of N.
3. Show that \mathbb{R}^{m+n} cannot be diffeomorphic to $M \times \widetilde{N}$ by considering an m-form $\omega \in \Omega^{m}(M)$ with $\int_{M} \omega=0$ and computing $\int_{s(M)} \pi^{*} \omega$, where $s: M \rightarrow M \times \widetilde{N}$, $s(p)=\left(p, q_{0}\right)$ (for some fixed $\left.q_{0} \in \widetilde{N}\right)$ and $\pi: M \times N \rightarrow M$ is the projection, in two different ways. (Hint: what is $\mathrm{d} \pi^{*} \omega$?)

12. Solutions

Solution of 12.1:

1.

$$
\begin{aligned}
d\left(i_{V} \omega\right) & =d\left(i_{V}\left(d x^{1} \wedge \cdots \wedge d x^{n}\right)\right) \\
& =d\left(\sum_{i=1}^{n}(-1)^{i+1} V_{i} d x^{1} \wedge \cdots \wedge \widehat{d x^{i}} \wedge \cdots \wedge d x^{n}\right) \\
& =\sum_{i=1}^{n} \frac{\partial V_{i}}{\partial x^{i}} d x^{1} \wedge \cdots \wedge d x^{n} \\
& =(\operatorname{div} V) \omega,
\end{aligned}
$$

2. see Lemma 9.17.ii, discussed in the lectures.
3.

$$
i_{V} \omega=\omega(\langle V, N\rangle N+(V-\langle V, N\rangle N), \cdots)=\omega(\langle V, N\rangle N, \cdots)=\langle V, N\rangle \sigma,
$$

to conclude it then suffices to apply Stokes theorem:

$$
\left.\int_{M} \operatorname{div}_{g}(V) \omega=\int_{M} d\left(i_{V} \omega\right)\right)=\int_{\partial M} i_{v} \omega=\int_{\partial M} g(V, N) \sigma .
$$

Solution of 12.2: See pg. 37-39 of the book "Differential forms in algebraic topology".

Solution of 12.3:

Let

$$
\begin{gathered}
A=\left\{\left(x_{0}, \ldots, x_{n} \in S^{n} \mid x_{0}>-1 / 2\right)\right\} \\
A=\left\{\left(x_{0}, \ldots, x_{n} \in S^{n} \mid x_{0}<1 / 2\right)\right\}
\end{gathered}
$$

A and B are open and their union is S^{n}. The intersection has the homotopy type of S^{n-1}, while both A and B are contractible. Inserting this information in the Meyer-Vietoris long exact sequence,

$$
\cdots \rightarrow H^{m}(A) \oplus H^{m}(B) \rightarrow H^{m}(A \cap B) \rightarrow H^{m+1}\left(S^{n}\right) \rightarrow H^{m+1}(A) \oplus H^{m+1}(B) \rightarrow \cdots
$$

we obtain isomorphisms

$$
0 \rightarrow H^{m}\left(S^{n-1}\right) \rightarrow H^{m+1}\left(S^{n}\right) \rightarrow 0
$$

for $n, m>0$.

Solution of 12.4: As suggested by the hints, we argue by contradiction. Let us assume that $M \times N$ carries a metric of negative sectional curvature.

1. Assume both M and N are not simply connected. Then $\pi_{1}(M \times N) \cong \pi_{1}(M) \times \pi_{1}(N)$ contains a subgroup isomorphic to \mathbb{Z}^{2}. This contradicts Preissmann's Theorem 8.12 and we can therefore assume that M is simply connected.
2. For the universal cover $M \times \widetilde{N}$ of $M \times N$ it must hold that $M \times \widetilde{N}$ is contractible and moreover diffeomorphic to \mathbb{R}^{m+n} by Cartan-Hadamard's Theorem 8.1.
3. Since M is assumed to be contractible, it must be orientable and $H^{m}(M) \neq 0$. But $0 \equiv \pi_{*}: H^{k}(M \times \widetilde{N}) \rightarrow H^{k}(M)$, which contradicts $\pi^{*} \circ i^{*}=i d$
