12. Differential forms, part two

12.1. Application of Stokes' theorem.

Let M be a smooth oriented manifold. Write $\omega \in \Omega^m(M)$ for the volume form of a Riemannian metric g on M. Let $V \in \Gamma(TM)$.

- 1. Show that $d(i_V \omega) = \operatorname{d} i v_q(V) \omega$.
- 2. Write h for the metric on ∂M induced by g via pullback along the inclusion map $i : \partial M \hookrightarrow M$, and write $\sigma \in \Omega^{m-1}(\partial M)$ for the volume form of $(\partial M, h)$. Show that $\sigma = i_N \omega$ where $N \in \mathcal{C}^{\infty}(\partial M; T_{\partial M}M)$ is an outward pointing unit normal vector field (i.e. g(N, N) = 1 and $N \perp T \partial M$). Prove also the existence of such an N.
- 3. Prove the divergence theorem: $\int_M \mathrm{d}iv_g(V)\omega = \int_{\partial M} g(V,N)\sigma$.

12.2. Poincare Lemma.

The goal of this exercise is to prove the Poincaré lemma for compactly supported cohomology in the following form: for a smooth manifold M, we have $H_c^{k+1}(\mathbb{R} \times M) \cong H_c^k(M)$.

1. Define the map $\pi_*: \Omega^{k+1}(\mathbb{R} \times M) \to \Omega^k(M)$, given by integration on the fibers, as follows: for $\omega = \mathrm{d}t \wedge \omega_0 + \omega_1$ with $\omega_j = \sum_I \omega_{j,I}(t,x) \mathrm{d}x^I$, j = 0,1, where the $\omega_{j,I}$ have compact support in t, set

$$\pi_*\omega := \int_{-\infty}^{\infty} \omega_0(t) \, \mathrm{d}t := \sum_I \left(\int_{-\infty}^{\infty} \omega_{0,I}(t,x) \, \mathrm{d}t \right) \mathrm{d}x^I.$$

Show that $\pi_* d = d\pi_*$. Therefore, π_* induces a map in cohomology which we denote

$$\pi_* \colon H^{*+1}(\mathbb{R} \times M) \to H^*(M).$$

2. Let $e=e(t)\,\mathrm{d} t$ where $e\in\mathcal{C}^\infty_\mathrm{c}(\mathbb{R})$ has total integral 1. Define the map

$$e_* : \Omega_{\mathrm{c}}^*(M) \to \Omega_{\mathrm{c}}^{*+1}(M \times \mathbb{R}), \qquad \phi \mapsto \phi \wedge e.$$

Show that e_* induces a map in cohomology which we denote also by

$$e_* \colon H^*(M) \to H^{*+1}(\mathbb{R} \times M).$$

3. Show that $\pi_* \circ e_* = \mathrm{I}d$ on $H^*(M)$.

4. Show that $e_* \circ \pi_* = \mathrm{Id}$ on $H^*(\mathbb{R}^\times M)$ as follows. Define the map

$$K : \Omega_{c}^{*}(\mathbb{R} \times M) \to \Omega_{c}^{*-1}(\mathbb{R} \times M),$$

$$K(f\pi^{*}\phi) := 0 \quad (f \in \mathcal{C}_{c}^{\infty}(\mathbb{R} \times M), \ \phi \in \Omega_{c}^{k}(M)),$$

$$K(f\pi^{*}\phi \wedge dt)(t) = (\pi^{*}\phi) \int_{-\infty}^{t} f - \phi A(t) \int_{-\infty}^{\infty} f$$

where $A(t) = \int_{-\infty}^{t} e$. Verify that

$$1 - e_* \pi_* = (-1)^k (dK - Kd)$$
 on $\Omega_c^{k+1}(\mathbb{R} \times M)$

and use this to conclude the argument.

12.3. Cohomology of the sphere.

The goal of this exercise is to show that the cohomology groups of \mathbb{S}^m are given by $H^k(\mathbb{S}^m) \cong \mathbb{R}$ for k = 0, m, and 0 for all other k. Proceed by induction on m using the Mayer–Vietoris sequence. (The case m = 1 may be assumed, as it was discussed in class.)

12.4. Metrics of negative sectional curvature.

The goal of this exercise is to prove the following theorem: Let M and N be compact, connected, smooth manifolds of positive dimension. Then $M \times N$ does not admit a metric of negative sectional curvature.

Proceed as follows:

- 1. Show that at least one of the factors M or N is simply connected.
- 2. Assume that M is simply connected. Show that the universal covering space of $M \times N$ is $M \times \widetilde{N} \cong \mathbb{R}^{m+n}$ where \widetilde{N} is the universal covering space of N.
- 3. Show that \mathbb{R}^{m+n} cannot be diffeomorphic to $M \times \widetilde{N}$ by considering an m-form $\omega \in \Omega^m(M)$ with $\int_M \omega = 0$ and computing $\int_{s(M)} \pi^* \omega$, where $s \colon M \to M \times \widetilde{N}$, $s(p) = (p, q_0)$ (for some fixed $q_0 \in \widetilde{N}$) and $\pi \colon M \times N \to M$ is the projection, in two different ways. (Hint: what is $d\pi^* \omega$?)

12. Solutions

Solution of 12.1:

1.

$$d(i_{V}\omega) = d\left(i_{V}\left(dx^{1}\wedge\cdots\wedge dx^{n}\right)\right)$$

$$= d\left(\sum_{i=1}^{n}(-1)^{i+1}V_{i}\ dx^{1}\wedge\cdots\wedge\widehat{dx^{i}}\wedge\cdots\wedge dx^{n}\right)$$

$$= \sum_{i=1}^{n}\frac{\partial V_{i}}{\partial x^{i}}\ dx^{1}\wedge\cdots\wedge dx^{n}$$

$$= (\operatorname{div} V)\omega,$$

2. see Lemma 9.17.ii, discussed in the lectures.

3.

$$i_V \omega = \omega(\langle V, N \rangle N + (V - \langle V, N \rangle N), \cdots) = \omega(\langle V, N \rangle N, \cdots) = \langle V, N \rangle \sigma,$$

to conclude it then suffices to apply Stokes theorem:

$$\int_{M} di v_{g}(V)\omega = \int_{M} d(i_{V}\omega) = \int_{\partial M} i_{v}\omega = \int_{\partial M} g(V, N)\sigma.$$

Solution of 12.2: See pg. 37-39 of the book "Differential forms in algebraic topology".

Solution of 12.3:

Let

$$A = \{(x_0, ..., x_n \in S^n \mid x_0 > -1/2)\}$$
$$A = \{(x_0, ..., x_n \in S^n \mid x_0 < 1/2)\}$$

A and B are open and their union is S^n . The intersection has the homotopy type of S^{n-1} , while both A and B are contractible. Inserting this information in the Meyer-Vietoris long exact sequence,

$$\cdots \to H^m(A) \oplus H^m(B) \to H^m(A \cap B) \to H^{m+1}(S^n) \to H^{m+1}(A) \oplus H^{m+1}(B) \to \cdots$$

we obtain isomorphisms

$$0 \to H^m(S^{n-1}) \to H^{m+1}(S^n) \to 0$$

for n, m > 0.

Solution of 12.4: As suggested by the hints, we argue by contradiction. Let us assume that $M \times N$ carries a metric of negative sectional curvature.

- 1. Assume both M and N are not simply connected. Then $\pi_1(M \times N) \cong \pi_1(M) \times \pi_1(N)$ contains a subgroup isomorphic to \mathbb{Z}^2 . This contradicts Preissmann's Theorem 8.12 and we can therefore assume that M is simply connected.
- 2. For the universal cover $M \times \widetilde{N}$ of $M \times N$ it must hold that $M \times \widetilde{N}$ is contractible and moreover diffeomorphic to \mathbb{R}^{m+n} by Cartan-Hadamard's Theorem 8.1.
- 3. Since M is assumed to be contractible, it must be orientable and $H^m(M) \neq 0$. But $0 \equiv \pi_* : H^k(M \times \widetilde{N}) \to H^k(M)$, which contradicts $\pi^* \circ i^* = id$

assignment: May 17, 2024 due: May 24, 2024 4/4