2. Length and volume, Levi-Civita connection, vector fields

2.1. Parametrizations, lengths and volumes.

As discussed in the lectures, for a smooth curve $\gamma:[a, b] \rightarrow M$, into a Riemannian manifold (M, g), one defines its length by

$$
L(\gamma)=\int_{a}^{b} g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right)^{1 / 2} d t
$$

We also define its energy

$$
E(\gamma)=\int_{a}^{b} g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right) d t
$$

1. Prove that $L(\gamma)$ is independent of the parametrization: for any diffeomorphism $\psi:[c, d] \rightarrow[a, b], L(\gamma \circ \psi)=L(\gamma)$.
2. Prove that in general $E(\gamma \circ \psi) \neq E(\gamma)$. Give sufficient conditions on ψ, such that equality holds.
3. Let \mathcal{A} be the family of diffeomorphisms between $[a, b]$ and $[c, d]$ for arbitrary $c \neq d$. Prove that

$$
\sup _{\psi \in \mathcal{A}} E(\gamma \circ \psi)=\infty, \quad \inf _{\psi \in \mathcal{A}} E(\gamma \circ \psi)=0
$$

4. Bonus question, to be discussed later: what happens if the length of $[c, d]$ is prescribed?

2.2. Connections.

Let M be an m-dimensional smooth manifold. Suppose for all $V, W \in \Gamma(T M)$ we are given $D_{V} W$ with the following properties for all $f \in \mathcal{C}^{\infty}(M), V, W \in \Gamma(T M)$:

$$
\begin{gathered}
D_{f V} W=f D_{V} W, \quad D_{V}(f W)=(V f) W+f D_{V} W \\
D_{V_{1}+V_{2}} W=D_{V_{1}} W+D_{V_{2}} W \quad D_{V}\left(W_{1}+W_{2}\right)=D_{V} W_{1}+D_{V} W_{2}
\end{gathered}
$$

One calls D a connection.

1. Show that in local coordinates $x=\left(x^{1}, \ldots, x^{m}\right)$ on M there exist smooth functions $\Gamma_{i j}^{k}$ (called connection coefficients, $i, j, k=1, \ldots, m$, so that $D_{V} W=$ $V^{i}\left(\partial_{x^{i}} W^{j}\right) \partial_{x^{j}}+V^{i} W^{j} \Gamma_{i j}^{k} \partial_{x^{k}}$.
2. Show, conversely, that this formula defines a map (in the local coordinate chart) satisfying the properties above.
3. Show that D is torsion-free, meaning $D_{V} W-D_{W} V=[V, W]$ for all $V, W \in \Gamma(T M)$, if and only if $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$.
4. Show that there exists a connection D.
5. Fix a connection D_{0}. Prove that $\left\{D-D_{0}: D\right.$ is a connection $\} \cong \Gamma\left(T_{1,2} M\right)$ via $D \mapsto\left((V, W) \mapsto D_{V} W-\left(D_{0}\right)_{V} W\right)$. Thus, the space of connections is an infinitedimensional affine space modelled on $\Gamma\left(T_{1,2} M\right)$.
6. State (and prove) an analogous result for connections on a vector bundle $E \rightarrow M$.

2.3. Levi-Civita connection of immersed submanifold.

1. Let (\bar{M}, \bar{g}) be a Riemannian manifold with Levi-Civita connection \bar{D}, and let M be a submanifold of \bar{M}, equipped with the induced metric $g:=i^{*} \bar{g}$, where $i: M \rightarrow \bar{M}$ is the inclusion map. Show that the Levi-Civita connection D of (M, g) satisfies $D_{X} Y=\left(\bar{D}_{X} Y\right)^{T}$ for all $X, Y \in \Gamma(T M)$, where the superscript T denotes the component tangential to M and $\bar{D}_{X} Y$ is defined as $\bar{D}_{X} Y:=\bar{D}_{\bar{X}} \bar{Y}$ for any extensions $\bar{X}, \bar{Y} \in \Gamma(T M)$ of X, Y.
2. Let (M, g) be a smooth manifold with Levi-Civita connection D. Consider the metric $\tilde{g}=\varphi g$ for a positive smooth function $\varphi: M \rightarrow \mathbb{R}_{>0}$. Compute the Levi-Civita connection of (M, \tilde{g}). What happens for $\varphi \equiv c>0$? How do you explain it?
Hint: By problem 2.2. any two connections differ by a tensor, try to compute that tensor to obtain the result.

2.4. Pullbacks.

Let N be a smooth manifold, and let (M, g) be a Riemannian manifold. Let $F: N \rightarrow M$ be a smooth map.

1. Let $V: N \rightarrow T M$ be a vector field along F. Let $p \in N$. Show that there exist a neighborhood $U \subset N$ of p, smooth vector fields $V_{1}, \ldots, V_{m} \in \Gamma(T M)$, and smooth functions $f^{1}, \ldots, f^{m} \in \mathcal{C}^{\infty}(N)$ so that $V=f^{i} F^{*}\left(V_{i}\right)$ on U. (Here $F^{*}\left(V_{i}\right): N \rightarrow T M$ is the vector field $N \ni q \mapsto V(F(q)) \in T_{F(q)} M$ along F.)
2. Let $V, W: N \rightarrow T M$ be vector fields along F and $Z \in \Gamma(T N)$. Write $\langle V, W\rangle(p)=$ $g_{F(p)}\left(V_{p}, W_{p}\right)$. Show that $Z\langle V, W\rangle=\left\langle\nabla_{Z} V, W\right\rangle+\left\langle V, \nabla_{Z} W\right\rangle$.
Hint. Show this first in the case that V, W are pullbacks along F of smooth vector fields on M. Conclude in the general case using the first part.

2. Solutions

Solution of 2.1:

1. Let $\psi:[c, d] \rightarrow[a, b]$ be a diffeomorphism. Then, $\gamma \circ \psi:[c, d] \rightarrow M$ is a smooth curve and $(\gamma \circ \psi)^{\prime}(t)=\gamma^{\prime}(\psi(t)) \psi^{\prime}(t)$. By definition of L,

$$
\begin{aligned}
L(\gamma \circ \psi) & =\int_{c}^{d} g\left(\gamma^{\prime}(\psi(t)) \psi^{\prime}(t), \gamma^{\prime}(\psi(t)) \psi^{\prime}(t)\right)^{1 / 2} d t \\
& =\int_{c}^{d} \psi^{\prime}(t) g\left(\gamma^{\prime}(\psi(t)), \gamma^{\prime}(\psi(t))\right)^{1 / 2} d t \\
& =\int_{a}^{b} g\left(\gamma^{\prime}(\psi(t)), \gamma^{\prime}(\psi(t))\right)^{1 / 2} d t=L(\gamma)
\end{aligned}
$$

2. As for part 1 ,

$$
\begin{aligned}
E(\gamma \circ \psi) & =\int_{c}^{d} g\left(\gamma^{\prime}(\psi(t)) \psi^{\prime}(t), \gamma^{\prime}(\psi(t)) \psi^{\prime}(t)\right) d t \\
& =\int_{c}^{d} \psi^{\prime}(t)^{2} g\left(\gamma^{\prime}(\psi(t)), \gamma^{\prime}(\psi(t))\right) d t \\
& =\int_{a}^{b} g\left(\gamma^{\prime}(\psi(t)), \gamma^{\prime}(\psi(t))\right) \psi^{\prime}(t) d t
\end{aligned}
$$

In particular $E(\gamma \circ \psi)=E(\gamma)$ if and only if the reparametrization ψ is by constant unit speed $\psi^{\prime} \equiv 1$.
3. Consider the diffeomorphism $\lambda_{t}:[0, t] \rightarrow[0,1], \lambda_{t}(x)=t^{-1} x$. By the computation in part 2. above,

$$
E\left(\gamma \circ \lambda_{t}\right)=t^{-1} E(\gamma)
$$

Letting $t \rightarrow 0$ and $t \rightarrow \infty$, the claim follows.

Solution of 2.2:

1. Recall the vector fields associated with the coordinate system $\left(x^{1}, \ldots, x^{m}\right)$ on $U \subset M$, $\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{m}}\right)=\left(X^{1}, \ldots, X^{m}\right), X^{i} \in \Gamma(T U)$. Define, $\Gamma_{i j}^{k}: U \rightarrow \mathbb{R}$ by

$$
\Gamma_{i j}^{k}(p) X^{k}(p)=\nabla_{X_{i}} X_{j}(p)
$$

This determines the function $\Gamma_{i j}^{k}$ uniquely on U. Using the local basis of $\left.T M\right|_{U}$ given by $X^{1}, . ., X^{m}$, write

$$
V=V^{X i} \quad W=W^{j} X^{j}
$$

Then,

$$
\begin{aligned}
\nabla_{V} W & =\nabla_{V^{i} X^{i}}\left(W^{j} X^{j}\right)=V^{i} \nabla_{X^{i}}\left(W^{j} X^{j}\right)=V^{i} W^{j} \nabla_{X^{i}} X^{j}+V^{i} X^{i}\left(W^{j}\right) X^{j} \\
& =V^{i} W^{j} \Gamma_{i j}^{k} X^{k}+V^{i} X^{i}\left(W^{j}\right) X^{j}
\end{aligned}
$$

2. Given the formula

$$
V^{i}\left(X^{i}\left(W^{j}\right)\right) X^{j}+V^{i} W^{j} \Gamma_{i j}^{k} X^{k}
$$

we verify:
$D_{f V}(W)=f V^{i}\left(X^{i}\left(W^{j}\right)\right) X^{j}+f V^{i} W^{j} \Gamma_{i j}^{k} X^{k}=f\left(V^{i}\left(X^{i}\left(W^{j}\right)\right) X^{j}+V^{i} W^{j} \Gamma_{i j}^{k} X^{k}\right)=f D_{V} W$,

$$
\begin{aligned}
D_{V}(f W) & =V^{i}\left(X^{i}\left(f W^{j}\right)\right) X^{j}+V^{i} f W^{j} \Gamma_{i j}^{k} X^{k} \\
& =V^{i} f\left(X^{i}\left(W^{j}\right)\right) X^{j}+V^{i} W^{j}\left(X^{i}(f)\right) X^{j}+V^{i} f W^{j} \Gamma_{i j}^{k} X^{k} \\
& =f D_{V} W+V^{i} W^{j}\left(X^{i}(f)\right) X^{j}=f D_{V} W+V(f) W
\end{aligned}
$$

3. By direct computation,

$$
\begin{gathered}
D_{V} W-D_{W} V=V^{i} X^{i}\left(W^{j}\right) X^{j}+V^{i} W^{j} \Gamma_{i j}^{k} X^{k}-W^{i} X^{i}\left(V^{j}\right) X^{j}-W^{i} V^{j} \Gamma_{i j}^{k} X^{k} \\
{[V, W]=\left(V^{i} X^{i}\left(W^{j}\right)-W^{i} X^{i}\left(V^{j}\right)\right) X^{j}}
\end{gathered}
$$

the second equation was proven in exercise 1.2. Taking the difference,

$$
D_{V} W-D_{W} V-[V, W]=V^{i} W^{j} \Gamma_{i j}^{k} X^{k}-W^{i} V^{j} \Gamma_{i j}^{k} X^{k}
$$

which vanishes if and only if it does so component wise, i.e. if and only if

$$
\begin{equation*}
V^{i} W^{j} \Gamma_{i j}^{k}-W^{i} V^{j} \Gamma_{i j}^{k}=0 \quad \text { for all } V, W \in \Gamma(T U) . \tag{1}
\end{equation*}
$$

It is thus clear that $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$ is a sufficient condition for D to be torsion free. To see that it is necessary, choose $V=X^{i}, W=X^{j}$, then (1) becomes

$$
\Gamma_{i j}^{k}=\Gamma_{j i}^{k},
$$

which concludes the proof of the claim.
4. To prove existence of a connection D we show that it is possible to patch together the connections D defined locally on a coordinate chart in part 1 using a partition of unity. Let $\left(U_{\alpha}, \rho_{\alpha}\right)$ be a locally finite partition of unity such that U_{α} is the domain of a chart φ_{α} (all compatible). Then, for arbitrary vector fields $V, W \in \Gamma(T M)$ define

$$
D_{V} W=\sum_{\alpha} \rho_{\alpha} D_{V}(W)
$$

We check property 2 :

$$
D_{f V} W=\sum_{\alpha} \rho_{\alpha}\left(f D_{V} W+V(f) W\right)=f D_{V} W+V(f) W
$$

5. Introducing the notation

$$
\begin{aligned}
& \qquad \qquad \begin{array}{l}
\qquad A(V, W)=D_{V} W-\left(D_{0}\right)_{V} W \\
\qquad A(f V, W)=D_{f V} W-\left(D_{0}\right)_{f V} W=f A(V, W) \\
A(V, f W)=D_{V}(f W)-\left(D_{0}\right)_{V}(f W)=f A(V, W)+V(f) W-V(f) W=f A(V, W) \\
\text { and } A\left(V_{1}+V_{2}, W\right)=A\left(V_{1}, W\right)+A\left(V_{2}\right), A\left(V, W_{1}+W_{2}\right)=A\left(V, W_{1}\right)+A\left(V, W_{2}\right) \\
\text { follow similarly using the properties of connections. }
\end{array} \text {. }
\end{aligned}
$$

Solution of 2.3:

1. As we have seen in the lecture, that $\left(\bar{D}_{\bar{X}} \bar{Y}\right)_{p}$ only depends on \bar{X}_{p} and $\bar{Y} \circ c$, where $c:(-\epsilon, \epsilon) \rightarrow \bar{M}$ is a curve with $\dot{c}(0)=\bar{X}$. Hence $\bar{D}_{X} Y$ is independent of the choice of the extensions \bar{X} and \bar{Y}.

Clearly, $\left(\bar{D}_{X} Y\right)^{\mathrm{T}}$ defines a linear connection. It remains to prove that this connection is compatible with g and torsion-free. For $X, Y, Z \in T M$, we have

$$
\begin{aligned}
Z g(X, Y) & =\bar{Z} \bar{g}(\bar{X}, \bar{Y})=\bar{g}\left(\bar{D}_{\bar{Z}} \bar{X}, \bar{Y}\right)+\bar{g}\left(\bar{X}, \bar{D}_{\bar{Z}} \bar{Y}\right) \\
& =\bar{g}\left(\left(\bar{D}_{Z} X\right)^{\mathrm{T}}, \bar{Y}\right)+\bar{g}\left(\bar{X},\left(\bar{D}_{Z} Y\right)^{\mathrm{T}}\right)=g\left(\left(\bar{D}_{Z} X\right)^{\mathrm{T}}, Y\right)+g\left(X,\left(\bar{D}_{Z} Y\right)^{\mathrm{T}}\right)
\end{aligned}
$$

and

$$
\left(\bar{D}_{X} Y\right)-\left(\bar{D}_{Y} X\right)=\left(\bar{D}_{\bar{X}} \bar{Y}\right)^{\mathrm{T}}-\left(\bar{D}_{\bar{Y}} \bar{X}\right)^{\mathrm{T}}=[\bar{X}, \bar{Y}]^{\mathrm{T}}=[X, Y] .
$$

2. Let D be the Levi-Civita connection of (M, g). Notice that in problem 2.2 we did not need a metric on M to verify the properties of a connection, hence D is also a connection on (M, \tilde{g}) for the Riemannian metric $\varphi g=\tilde{g}$. The Levi Civita connection needs to satisfy two properties: the torsion free condition and the metric compatibility (see Def. 3.5). Only the second one depends on the metric. Let $\tilde{\nabla}$ denote the Levi-Civita connection of (M, \tilde{g}). Let $A=\nabla-\tilde{\nabla}$. Recall that the Levi-Civita connection is uniquely determined by the Koszul formula (see Theorem 3.7),

$$
\begin{aligned}
& 2 g\left(\nabla_{X} Y, Z\right)=X(g(Y, Z))+Y(g(X, Z))-Z(g(X, Y)) \\
& \quad-g([Y, X], Z)-g([X, Z], Y)-g([Y, Z], X) \\
& 2 \tilde{g}\left(\tilde{\nabla}_{X} Y, Z\right)=X(\tilde{g}(Y, Z))+Y(\tilde{g}(X, Z))-Z(\tilde{g}(X, Y)) \\
& - \\
& -\tilde{g}([Y, X], Z)-\tilde{g}([X, Z], Y)-\tilde{g}([Y, Z], X) \\
& =X(\varphi) g(Y, Z)+\varphi X(g(Y, Z))+Y(\varphi) g(X, Z)+\varphi Y(g(X, Z)) \\
& - \\
& -Z(\varphi) g(X, Y)-\varphi Z(g(X, Y)) \\
& -\varphi g([Y, X], Z)-\varphi g([X, Z], Y)-\varphi g([Y, Z], X) \\
&
\end{aligned} \quad 2 \varphi g\left(\nabla_{X} Y, Z\right)+X(\varphi) g(Y, Z)+Y(\varphi) g(X, Z)-Z(\varphi) g(X, Y) .
$$

We obtained,

$$
2 \tilde{g}\left(\nabla_{X} Y-A(X, Y), Z\right)=2 \tilde{g}\left(\nabla_{X} Y, Z\right)+X(\varphi) g(Y, Z)+Y(\varphi) g(X, Z)-Z(\varphi) g(X, Y)
$$

which implies

$$
-2 A(X, Y)=\varphi^{-1}(X(\varphi) Y+Y(\varphi) X-\operatorname{grad}(\varphi) g(X, Y))
$$

In particular,

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\frac{\varphi^{-1}}{2}(X(\varphi) Y+Y(\varphi) X-\operatorname{grad}(\varphi) g(X, Y))
$$

Remark: writing $\varphi=e^{2 f}$, the formula simplifies to

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+X(f) Y+Y(f) X-\operatorname{grad}(f) g(X, Y)
$$

Solution of 2.4: Given $p \in N, F(p) \in M$. Let $\left(x^{1}, \ldots, x^{m}\right)$ be a chart on $U \subset M$ around $F(p)$. Consider the associated vector fields $\partial_{1}, \ldots, \partial_{m}$ which locally give a frame of $T M$. Then, $\pi \circ V=F$ is continuous (π denotes the projection $T M \rightarrow M$), and on the open set $O=(\pi \circ V)^{-1}(U)$,

$$
V(p)=f^{i}(p) \partial_{i}(F(p))=: f^{i}(p) F^{*} \partial_{i}(p)
$$

Part 2. By Definition 3.10, for $W(q)=W^{k} \partial_{k}(F(q))$

$$
\nabla_{Z} W(p)=\left.\left(Z_{p}\left(W^{k}\right)+d_{p} F^{i}(Z) W^{j}(p) \Gamma_{i j}^{k}(F(p))\right) \partial_{k}\right|_{F(p)}
$$

and hence,

$$
\begin{aligned}
\left\langle\nabla_{Z} V, W\right\rangle+\left\langle V, \nabla_{Z} W\right\rangle= & \left(Z_{p}\left(V^{k}\right)+d_{p} F^{i}(Z) V^{j}(p) \Gamma_{i j}^{k}(F(p))\right) W^{l} g_{k l}(F(p)) \\
& +\left(Z_{p}\left(W^{k}\right)+d_{p} F^{i}(Z) W^{j}(p) \Gamma_{i j}^{k}(F(p))\right) V^{l} g_{k l}(F(p)) \\
Z\langle V, W\rangle= & Z\left\langle V^{i} F^{*} \partial_{i}, W^{j} \partial_{j}\right\rangle=Z\left(V^{i} W^{j} g_{F(p)}\left(\partial_{i}\left(F(p), \partial_{j}(F(p))\right)\right)\right. \\
= & Z\left(V^{i} W^{j} g_{i j}(F(p))\right) \\
= & Z\left(V^{i}\right) W^{j} g_{i j}(F(p))+Z\left(W^{j}\right) V^{i} g_{i j}(F(p))+V^{i} W^{j} Z\left(g_{i j}(F(p))\right)
\end{aligned}
$$

To conclude it suffices to check:

$$
\begin{gathered}
\left.d_{p} F^{i}(Z) V^{j}(p) \Gamma_{i j}^{k}(F(p))\right) W^{l} g_{k l}\left(F(p)+d_{p} F^{i}(Z) W^{j}(p) \Gamma_{i j}^{k}(F(p)) V^{l} g_{k l}(F(p))=V^{i} W^{j} Z\left(g_{i j}(F(p))\right)\right. \\
Z\left(g_{i j}(F(p))\right)=D g_{i j}(F(p)) D F(p)[Z(p)]=g_{r j} \Gamma_{i l}^{r} D F^{l}[Z(p)]+g_{i r} \Gamma_{l j}^{r} D F^{l}[Z(p)]
\end{gathered}
$$

Up to relabelling, this concludes the proof of the claim.

