3. Affine connections and geodesics

3.1. Connection along integral curves of vector fields.

Let X and Y be smooth vector fields on M, i.e. $X, Y \in \Gamma(TM)$. Let ∇ denote the Levi-Civita connection of (M, g). Let $p \in M$ and $\gamma : [0, 1] \to M$ the integral curve of X through p. Recall that by definition, the integral curve γ satisfies the initial value problem

$$\begin{cases} \gamma(0) = p \\ \frac{\partial \gamma}{\partial t} = X(\gamma(t)) \end{cases}$$

Prove that ∇ is given by

$$\nabla_X Y(p) = \frac{d}{dt} \left(P_{\gamma,0,t}^{-1}(Y(\gamma(t))) \right|_{t=0},$$

where $P_{\gamma,0,t}: T_{\gamma(0)}M \to T_{\gamma(t)}M$ is the parallel transport along γ from 0 to t. *Hint:* prove that you can extend a basis $e_1, ..., e_m$ of T_pM to a local frame $e_1(t), ..., e_m(t) \in T_{\gamma(t)}M$ along γ such that $e_i(t)$ is parallel. Consider the restriction of Y on $\gamma([0, 1])$ expressed using the parallel frame.

3.2. Connection is determined by geodesics and torsion tensor.

Let ∇ and $\tilde{\nabla}$ be two connections on TM. We call a curve $\gamma : [0, 1] \to M$ a geodesic if it is self-parallel, that is $\nabla_{\partial_t} \gamma' = 0$ (see Definition 3.18 in the lecture notes). Prove that the following two are equivalent:

- 1. $\nabla \equiv \tilde{\nabla}$, the two connections are identical
- 2. ∇ and $\tilde{\nabla}$ have the same geodesics and the same torsion fields $T_{\nabla} \equiv T_{\tilde{\nabla}}$.

Hint: by Definition 3.5, $T_{\nabla}(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y]$ and $T_{\nabla}(X, Y) = -T_{\nabla}(Y, X)$. By exercise 2.5, the difference of two connections satisfies $A = \nabla - \tilde{\nabla} \in \Gamma(T_{1,2}M)$. Decompose A in its symmetric A^s and anti-symmetric A^a part and try to understand what the conditions in 2. mean for A^a and A^s respectively.

3.3. Parallel transport on the 2-sphere.

Let $S^2 \subset \mathbb{R}^3$ be the unit sphere endowed with the Levi-Civita connection on TS^2 . Let $\gamma: [0,1] \to S^2$ be a smooth curve.

- 1. Prove that parallel transport is independent of reparametrization: if V is a parallel vector field along γ , then for any diffeomorphism between intervals (reparametrization) $\alpha : [a, b] \rightarrow [0, 1], V \circ \alpha$ is a vector field along $\gamma \circ \alpha$ and it is parallel. *Remark:* For this part of the exercise, $M = S^2$ is not needed, and does not simplify
- 2. Prove that a vector field V along γ is parallel if and only if $\partial_t V(t) \in \mathbb{R}^3$ is normal to the sphere.

Hint: use a parallel frame along γ (see also the hint to Problem 3.1) and the compatibility of the metric applied to sections of constant length.

- What is the parallel transport along geodesics on S²?
 Hint: By symmetry, it suffices to choose a geodesic in a convenient system of coordinates.
- 4. What is the parallel transport along curves that parametrize $S^2 \cap \{z = c\}$ for $c \in (-1, 1)$?

3.4. Parallel transport and geodesics on hyperbolic plane.

the proof, the connection can be chosen to be arbitrary.

Recall the hyperbolic plane introduced in exercise 1.4:

$$\mathbb{H}^2 := \{ z \in \mathbb{C} : \Im z > 0 \}$$
 and $g_{x+iy} = y^{-2} (\mathrm{d}x^2 + \mathrm{d}y^2).$

- 1. Compute the Christoffel symbols of the Levi-Civita connection of (\mathbb{H}^2, g) .
- 2. Let v = (0, 1) be a tangent vector at $p = (0, 1) \in \mathbb{H}^2$. (This means that under the canonical identification of $T_p \mathbb{H}^2$ with \mathbb{R}^2 , the vector v_0 is identified with (0, 1).) Let v(t) be the parallel transport of v along the curve $\gamma(t) = (t, 1)$. Show that v(t) makes an angle t with the direction of the y-axis.
- 3. Show that vertical lines are geodesics in (\mathbb{H}^2, g) . Show that any geodesic is either a vertical half line or a half circle intersecting the *x*-axis orthogonally.

Hint for 2: In the proof of 3.14 you saw the defining ODE for parallel transport in local coordinates. In this case, writing v(t) = (w(t), z(t)), deduce that the parallel transport system simplifies to

$$\begin{cases} \dot{w}(t) + \Gamma_{12}^{1}(\pi(v(t)))z = 0\\ \dot{z}(t) + \Gamma_{11}^{2}(\pi(v(t)))w = 0 \end{cases}$$
(1)

Since parallel transport is an isometry, parametrize the curve v(t) in $T\mathbb{H}^2$ using just one parameter $\theta(t)$, $v(t) = (\cos(\theta(t)), \sin(\theta(t)))$.

3. Solutions

Solution of 3.1:Recall the definition of parallel transport: defining for any initial value $e_0 \in T_{\gamma(0)}M$

$$e(t) = P_{\gamma,0,t}(e_0),$$
$$\nabla_{\dot{\gamma}} e = 0$$

Moreover, $P_{\gamma,0,t}$ is an isometry between $P_{\gamma(0)}$ and $P_{\gamma(t)}$. In particular, choosing one orthonormal basis $e_1, ... e_m$ of $T_{\gamma(0)M}$, one can use the parallel transport to obtain

$$\{P_{\gamma,0,t}(e_i) \mid i = 1, ..., m\}$$

which is a orthonormal basis for $T_{\gamma(t)}M$ given that P is an preserves scalar products. Using this orthonormal frame, we write for every point on the curve γ ,

$$Y(\gamma(t)) = Y^i(t)e_i(t).$$

Using this notation we have

$$P_{\gamma,0,t}^{-1}(Y^{i}(t)e_{i}(t)) = Y^{i}(t)e_{i}(0)$$

and hence

$$\left. \frac{d}{dt} (P_{\gamma,0,t}^{-1}(Y(\gamma(t))) \right|_{t=0} = \dot{Y}^i(0) e_i(0).$$

On the other hand, $\nabla_X Y \in \Gamma(TM)$ can be computed using the metric compatibility of the Levi-Civita connection:

$$g(\nabla_X Y, e_i) = X(Y^i) - g(Y, \nabla_X e^i) = X(Y^i) = \dot{Y}^i,$$
$$\implies \nabla_X Y = \dot{Y}^i(0)e_i.$$

Solution of 3.2:We prove 2. \implies 1. (The other direction is clear)

$$A(X,Y) = \nabla_X Y - \tilde{\nabla}_X Y = A^a(X,Y) + A^s(X,Y)$$

for

$$A^{a}(X,Y) = \frac{1}{2}(A(X,Y) - A(Y,X)) \quad A^{s}(X,Y) = \frac{1}{2}(A(X,Y) + A(Y,X))$$

Then, $A^{s}(X,Y) = A^{s}(Y,X)$, $A^{a}(X,Y) = -A^{a}(Y,X)$ by definition.

$$A^s(X,X) = 0 \iff \nabla_X X = \tilde{\nabla}_X X.$$

$$A^{a} \equiv 0 \iff \nabla_{X}Y - \nabla_{Y}X = \tilde{\nabla}_{X}Y - \tilde{\nabla}_{Y}X \equiv T_{\nabla}(X,Y) = T_{\tilde{\nabla}}(X,Y)$$

It remains to prove that $\nabla_X X \equiv \tilde{\nabla}_X X$ holds if and only if ∇ and $\tilde{\nabla}$ have the same geodesics. For fixed tangent vector $X(p) \in T_p M$ there exists a smooth curve $\gamma : [-I, I] \to M$ such that $\gamma(0) = p$ and $\gamma'(0) = X(p)$. If γ is a geodesic for a given connection ∇ ,

$$\nabla_X X = 0.$$

In particular if two connections have the same geodesics, $A^s \equiv 0$. Conversely, assume the two connections ∇ and $\tilde{\nabla}$ do not have the same geodesics. Then there is a point p and a curve γ , $\gamma'(0) = X$ such that γ is not a geodesic for $\tilde{\nabla}$ but it is for ∇ . This implies the existence of t with

$$\nabla_X X(\gamma(t)) = 0 \quad \neq \quad \tilde{\nabla}_X X(\gamma(t)).$$

Solution of 3.3:

1. Denote by ∂_s the tangent vector on [a, b] and by $\tilde{V}(s) := V(\gamma(\alpha(s)))$ the vector field along α . For a frame of TM along γ we write in local coordinates

$$V(\gamma(t)) = V^{i}(t)e_{i}(t) \quad \tilde{V}(s) = V^{i}(\alpha(s))e_{i}(\alpha(s))$$

$$\begin{aligned} \nabla_{\partial_s} \tilde{V} &= (\partial_s (V^k(\alpha(s))) + d(\gamma \circ \alpha)^i (\partial_s) V^j(\alpha(s)) \Gamma^k_{ij}) e_k \\ &= \partial_s \alpha(s) (\partial_t (V^k(((\alpha(s)))) + d(\gamma)^i (\partial_t) V^j(\alpha(s)) \Gamma^k_{ij}) e_k = \partial_s \alpha(s) \nabla_{\partial_t} V = 0 \,. \end{aligned}$$

2. Let $(e_1(t), e_2(t))$ be a parallel orthonormal frame along γ . Let $V = V^i(t)e_i(t)$ be a vector field along γ .

$$\langle \nabla_{\partial_t}^{S^2} V, e_i \rangle = \langle \nabla_{\partial_t}^{\mathbb{R}^3} V, e_i \rangle = \langle \partial_t V, e_i \rangle = \nabla_{\partial_t} g(V_{ei})$$

and writing $V = V^i e_i$,

$$\partial_t V \perp S^2 \iff V^i \equiv \text{const.}$$

To conclude notice that

$$\partial_t g(V, e_i) = \partial_t V^i = g(\nabla_{\partial_t} V, e_i)$$

which implies that the coefficients V^i are constant if V is parallel. Moreover, linear combinations of parallel sections are parallel so that

$$\partial_t V \perp S^2 \iff V^i \equiv \text{const.} \iff \nabla^{S^2}_{\partial_t} V = 0.$$

- 3. Given 2., and assuming w.l.o.g. that we are considering the equatorial $S^1 \subset S^2$ as the geodesic γ , for any vector $v \in T_{(0,1,0)}S^2$, the parallel transport along γ is exactly the image of v under the rotation of \mathbb{R}^3 which fixes the z-axis.
- 4. Using polar coordinates $(\varphi, \theta) \in (0, 2\pi) \times (0, \pi)$ on S^2 , such that φ is the coordinate describing the change in the planes parallel to $\{z = 0\}$, one can check that this frame is parallel when restricted to any curve parametrizing $\{z = 0\} \cap S^2$. Therefore in this case (c = 0) the parallel transport of a vector has constant coefficients in this frame.

When $c \neq 0$, the frame is no longer parallel. Let us first do some preliminary computations to recall the properties of these vector fields:

$$\begin{aligned} \partial_{\theta}(r\sin(\theta)\cos(\varphi), r\sin(\theta)\sin(\varphi), r\cos(\theta)) &= r(\cos(\theta)\cos(\varphi), \cos(\theta)\sin(\varphi), -\sin(\theta)) \\ \\ \partial_{\theta}(p) \cdot_{\mathbb{R}^{3}} p &= r^{2}\sin(\theta)\cos(\theta)(\sin^{2}(\varphi) + \cos^{2}(\varphi) - 1)) = 0 \\ \\ \partial_{\varphi}(r\sin(\theta)\cos(\varphi), r\sin(\theta)\sin(\varphi), r\cos(\theta)) &= r(-\sin(\theta)\sin(\varphi), \sin(\theta)\cos(\varphi), 0) \\ \\ \\ \partial_{\varphi}(p) \cdot_{\mathbb{R}^{3}} p &= 0. \end{aligned}$$

A parametrization of $S^2 \cap \{z = c\}$ is given by

$$\gamma: t \mapsto (\sin(\theta_c)\cos(t), \sin(\theta_c)\sin(t), \cos(\theta_c)).$$

The metric coefficients for the standard metric on S^2 in this frame are

$$g_{\theta\varphi} = 0$$
 $g_{\varphi\varphi} = \sin^2(\theta)$ $g_{\theta\theta} = 1.$

The Christoffel symbols are given by

$$\Gamma^{\theta}_{\varphi\varphi} = -\sin(\theta)\cos(\theta) \quad \Gamma^{\varphi}_{\theta\varphi} = \Gamma^{\varphi}_{\varphi\theta} = \frac{\cos(\theta)}{\sin(\theta)}$$

assignment: March 8, 2024 due: March 15, 2024

The parallel transport equation becomes

$$\nabla_{\partial_t} V = (\partial_t V^k + \partial_t \gamma^i V^j \Gamma^k_{ij}) \partial_k = 0$$

$$\begin{cases} \partial_t V^\theta + \partial_t \gamma^\varphi V^\varphi \Gamma^\theta_{\varphi\varphi} = \partial_t V^\theta + \partial_t \gamma^\varphi V^\varphi (-\sin(\theta)\cos(\theta)) = 0\\ \partial_t V^\varphi + \partial_t \gamma^\varphi V^\theta \Gamma^\varphi_{\varphi\theta} = \partial_t V^\varphi + \partial_t \gamma^\varphi V^\theta \frac{\cos(\theta)}{\sin(\theta)} = 0 \end{cases}$$

where we used $\gamma^{\theta} = \text{const.}$ to simplify the second equation. Using $\partial_t \gamma^{\varphi} = 1$,

$$\begin{cases} \partial_t V^{\theta} + V^{\varphi}(-\sin(\theta)\cos(\theta)) = 0\\ \partial_t V^{\varphi} + V^{\theta} \frac{\cos(\theta)}{\sin(\theta)} = 0 \end{cases}$$

differentiating once more in t,

$$\begin{cases} \partial_t^2 V^{\theta} + \cos^2(\theta_c) V^{\theta} = 0\\ \partial_t^2 V^{\varphi} + \cos^2(\theta_c) V^{\varphi} = 0 \end{cases}$$
$$\begin{cases} V^{\theta} = A \cos(\cos(\theta_c)t) + B \sin(\cos(\theta_c)t)\\ V^{\varphi} = C \cos(\cos(\theta_c)t) + D \sin(\cos(\theta_c)t) \,. \end{cases}$$

Solution of 3.4:

1. The metric coefficients with respect to the coordinates $\varphi = (\varphi^1, \varphi^2) = (x, y)$ are given by

$$g_{12} = 0, g_{11} = g_{22} = \frac{1}{y^2}.$$

The Christoffel symbols can then be computed using

$$\Gamma^{i}_{kl} = \frac{1}{2}g^{im}(g_{mk,l} + g_{ml,k} - g_{kl,m})$$

which gives

$$\Gamma_{11}^1 = \Gamma_{12}^2 = \Gamma_{22}^1 = 0$$
 $\Gamma_{11}^2 = \frac{1}{y}$ $\Gamma_{12}^1 = \Gamma_{22}^2 = -\frac{1}{y}$

2. Following the hint we obtain that the parallel transport equation reduces to

$$\frac{d\theta}{dt} = -1$$

which together with $v_0 = (0, 1)$ gives $\theta(t) = \frac{\pi}{2} - t$.

3. If we use the Christoffel symbols obtained in 1. to simplify the geodesic equation we obtain the following characterizations of geodesics $t \mapsto (x(t), y(t))$:

$$\frac{d^2x}{dt^2} - \frac{2}{y}\frac{dx}{dt}\frac{dy}{dt} = 0 \quad \frac{d^2y}{dt^2} + \frac{1}{y}\left(\left(\frac{dx}{dt}\right)^2 - \left(\frac{dy}{dt}\right)^2\right) = 0$$

If $\frac{dx}{dt} \neq 0$,

$$\frac{d}{dt}\left(y\frac{dy}{dt}\left(\frac{dx}{dt}\right)^{-1}\right) = \left(\frac{dy}{dt}\right)^2 \left(\frac{dx}{dt}\right)^{-1} + y\frac{d^2y}{dt^2}\left(\frac{dx}{dt}\right)^{-1} - y\frac{dy}{dt}\left(\frac{dx}{dt}\right)^{-2}\frac{d^2x}{dt^2}$$

and inserting the geodesic equations from above,

$$\frac{d}{dt}\left(y\frac{dy}{dt}\left(\frac{dx}{dt}\right)^{-1}\right) = y\frac{d^2y}{dt^2}\left(\frac{dx}{dt}\right)^{-1} - \left(\frac{dy}{dt}\right)^2\left(\frac{dx}{dt}\right)^{-1}$$
$$= -\left(\left(\frac{dx}{dt}\right)^2 - \left(\frac{dy}{dt}\right)^2\right)\left(\frac{dx}{dt}\right)^{-1} - \left(\frac{dy}{dt}\right)^2\left(\frac{dx}{dt}\right)^{-1} = -\frac{dx}{dt}$$

By rearranging terms we find the equation

$$\frac{d^2}{dt}(x^2+y^2) = 0$$

which is the equation of circles centered at the origin. The case $\frac{dx}{dt}$ corresponds to vertical straight lines.