3. Affine connections and geodesics

3.1. Connection along integral curves of vector fields.

Let X and Y be smooth vector fields on M, i.e. $X, Y \in \Gamma(T M)$. Let ∇ denote the Levi-Civita connection of (M, g). Let $p \in M$ and $\gamma:[0,1] \rightarrow M$ the integral curve of X through p. Recall that by definition, the integral curve γ satisfies the initial value problem

$$
\left\{\begin{array}{l}
\gamma(0)=p \\
\frac{\partial \gamma}{\partial t}=X(\gamma(t))
\end{array}\right.
$$

Prove that ∇ is given by

$$
\nabla_{X} Y(p)=\frac{d}{d t}\left(\left.P_{\gamma, 0, t}^{-1}(Y(\gamma(t)))\right|_{t=0}\right.
$$

where $P_{\gamma, 0, t}: T_{\gamma(0)} M \rightarrow T_{\gamma(t)} M$ is the parallel transport along γ from 0 to t.
Hint: prove that you can extend a basis e_{1}, \ldots, e_{m} of $T_{p} M$ to a local frame $e_{1}(t), \ldots, e_{m}(t) \in$ $T_{\gamma(t)} M$ along γ such that $e_{i}(t)$ is parallel. Consider the restriction of Y on $\gamma([0,1])$ expressed using the parallel frame.

3.2. Connection is determined by geodesics and torsion tensor.

Let ∇ and $\tilde{\nabla}$ be two connections on $T M$. We call a curve $\gamma:[0,1] \rightarrow M$ a geodesic if it is self-parallel, that is $\nabla_{\partial_{t}} \gamma^{\prime}=0$ (see Definition 3.18 in the lecture notes). Prove that the following two are equivalent:

1. $\nabla \equiv \tilde{\nabla}$, the two connections are identical
2. ∇ and $\tilde{\nabla}$ have the same geodesics and the same torsion fields $T_{\nabla} \equiv T_{\tilde{\nabla}}$.

Hint: by Definition 3.5, $T_{\nabla}(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]$ and $T_{\nabla}(X, Y)=-T_{\nabla}(Y, X)$. By exercise 2.5, the difference of two connections satisfies $A=\nabla-\tilde{\nabla} \in \Gamma\left(T_{1,2} M\right)$. Decompose A in its symmetric A^{s} and anti-symmetric A^{a} part and try to understand what the conditions in 2 . mean for A^{a} and A^{s} respectively.

3.3. Parallel transport on the 2-sphere.

Let $S^{2} \subset \mathbb{R}^{3}$ be the unit sphere endowed with the Levi-Civita connection on $T S^{2}$. Let $\gamma:[0,1] \rightarrow S^{2}$ be a smooth curve.

1. Prove that parallel transport is independent of reparametrization: if V is a parallel vector field along γ, then for any diffeomorphism between intervals (reparametrization) $\alpha:[a, b] \rightarrow[0,1], V \circ \alpha$ is a vector field along $\gamma \circ \alpha$ and it is parallel.
Remark: For this part of the exercise, $M=S^{2}$ is not needed, and does not simplify the proof, the connection can be chosen to be arbitrary.
2. Prove that a vector field V along γ is parallel if and only if $\partial_{t} V(t) \in \mathbb{R}^{3}$ is normal to the sphere.
Hint: use a parallel frame along γ (see also the hint to Problem 3.1) and the compatibility of the metric applied to sections of constant length.
3. What is the parallel transport along geodesics on S^{2} ?

Hint: By symmetry, it suffices to choose a geodesic in a convenient system of coordinates.
4. What is the parallel transport along curves that parametrize $S^{2} \cap\{z=c\}$ for $c \in(-1,1)$?

3.4. Parallel transport and geodesics on hyperbolic plane.

Recall the hyperbolic plane introduced in exercise 1.4:

$$
\mathbb{H}^{2}:=\{z \in \mathbb{C}: \Im z>0\} \quad \text { and } \quad g_{x+i y}=y^{-2}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}\right) .
$$

1. Compute the Christoffel symbols of the Levi-Civita connection of $\left(\mathbb{H}^{2}, g\right)$.
2. Let $v=(0,1)$ be a tangent vector at $p=(0,1) \in \mathbb{H}^{2}$. (This means that under the canonical identification of $T_{p} \mathbb{H}^{2}$ with \mathbb{R}^{2}, the vector v_{0} is identified with $(0,1)$.) Let $v(t)$ be the parallel transport of v along the curve $\gamma(t)=(t, 1)$. Show that $v(t)$ makes an angle t with the direction of the y-axis.
3. Show that vertical lines are geodesics in $\left(\mathbb{H}^{2}, g\right)$. Show that any geodesic is either a vertical half line or a half circle intersecting the x-axis orthogonally.

Hint for 2: In the proof of 3.14 you saw the defining ODE for parallel transport in local coordinates. In this case, writing $v(t)=(w(t), z(t))$, deduce that the parallel transport system simplifies to

$$
\left\{\begin{array}{l}
\dot{w}(t)+\Gamma_{12}^{1}(\pi(v(t))) z=0 \tag{1}\\
\dot{z}(t)+\Gamma_{11}^{2}(\pi(v(t))) w=0
\end{array}\right.
$$

Since parallel transport is an isometry, parametrize the curve $v(t)$ in $T \mathbb{H}^{2}$ using just one parameter $\theta(t), v(t)=(\cos (\theta(t)), \sin (\theta(t)))$.

3. Solutions

Solution of 3.1:Recall the definition of parallel transport: defining for any initial value $e_{0} \in T_{\gamma(0)} M$

$$
\begin{gathered}
e(t)=P_{\gamma, 0, t}\left(e_{0}\right), \\
\nabla_{\dot{\gamma}} e=0
\end{gathered}
$$

Moreover, $P_{\gamma, 0, t}$ is an isometry between $P_{\gamma(0)}$ and $P_{\gamma(t)}$. In particular, choosing one orthonormal basis $e_{1}, . . e_{m}$ of $T_{\gamma(0) M}$, one can use the parallel transport to obtain

$$
\left\{P_{\gamma, 0, t}\left(e_{i}\right) \mid i=1, \ldots, m\right\}
$$

which is a orthonormal basis for $T_{\gamma(t)} M$ given that P is an preserves scalar products. Using this orthonormal frame, we write for every point on the curve γ,

$$
Y(\gamma(t))=Y^{i}(t) e_{i}(t)
$$

Using this notation we have

$$
P_{\gamma, 0, t}^{-1}\left(Y^{i}(t) e_{i}(t)\right)=Y^{i}(t) e_{i}(0)
$$

and hence

$$
\frac{d}{d t}\left(\left.P_{\gamma, 0, t}^{-1}(Y(\gamma(t)))\right|_{t=0}=\dot{Y}^{i}(0) e_{i}(0)\right.
$$

On the other hand, $\nabla_{X} Y \in \Gamma(T M)$ can be computed using the metric compatibility of the Levi-Civita connection:

$$
\begin{aligned}
g\left(\nabla_{X} Y, e_{i}\right)= & X\left(Y^{i}\right)-g\left(Y, \nabla_{X} e^{i}\right)=X\left(Y^{i}\right)=\dot{Y}^{i}, \\
& \Longrightarrow \nabla_{X} Y=\dot{Y}^{i}(0) e_{i}
\end{aligned}
$$

Solution of $\mathbf{3 . 2}$:We prove $2 . \Longrightarrow 1$. (The other direction is clear)

$$
A(X, Y)=\nabla_{X} Y-\tilde{\nabla}_{X} Y=A^{a}(X, Y)+A^{s}(X, Y)
$$

for

$$
A^{a}(X, Y)=\frac{1}{2}(A(X, Y)-A(Y, X)) \quad A^{s}(X, Y)=\frac{1}{2}(A(X, Y)+A(Y, X))
$$

Then, $A^{s}(X, Y)=A^{s}(Y, X), A^{a}(X, Y)=-A^{a}(Y, X)$ by definition.

$$
\begin{gathered}
A^{s}(X, X)=0 \Longleftrightarrow \nabla_{X} X=\tilde{\nabla}_{X} X \\
A^{a} \equiv 0 \Longleftrightarrow \nabla_{X} Y-\nabla_{Y} X=\tilde{\nabla}_{X} Y-\tilde{\nabla}_{Y} X \equiv T_{\nabla}(X, Y)=T_{\tilde{\nabla}}(X, Y)
\end{gathered}
$$

It remains to prove that $\nabla_{X} X \equiv \tilde{\nabla}_{X} X$ holds if and only if ∇ and $\tilde{\nabla}$ have the same geodesics. For fixed tangent vector $X(p) \in T_{p} M$ there exists a smooth curve $\gamma:[-I, I] \rightarrow$ M such that $\gamma(0)=p$ and $\gamma^{\prime}(0)=X(p)$. If γ is a geodesic for a given connection ∇,

$$
\nabla_{X} X=0
$$

In particular if two connections have the same geodesics, $A^{s} \equiv 0$. Conversely, assume the two connections ∇ and $\tilde{\nabla}$ do not have the same geodesics. Then there is a point p and a curve $\gamma, \gamma^{\prime}(0)=X$ such that γ is not a geodesic for $\tilde{\nabla}$ but it is for ∇. This implies the existence of t with

$$
\nabla_{X} X(\gamma(t))=0 \quad \neq \quad \tilde{\nabla}_{X} X(\gamma(t))
$$

Solution of 3.3:

1. Denote by ∂_{s} the tangent vector on $[a, b]$ and by $\tilde{V}(s):=V(\gamma(\alpha(s)))$ the vector field along α. For a frame of $T M$ along γ we write in local coordinates

$$
V(\gamma(t))=V^{i}(t) e_{i}(t) \quad \tilde{V}(s)=V^{i}(\alpha(s)) e_{i}(\alpha(s))
$$

$$
\begin{aligned}
\nabla_{\partial_{s}} \tilde{V} & =\left(\partial_{s}\left(V^{k}(\alpha(s))\right)+d(\gamma \circ \alpha)^{i}\left(\partial_{s}\right) V^{j}(\alpha(s)) \Gamma_{i j}^{k}\right) e_{k} \\
& =\partial_{s} \alpha(s)\left(\partial_{t}\left(V^{k}(((\alpha(s))))+d(\gamma)^{i}\left(\partial_{t}\right) V^{j}(\alpha(s)) \Gamma_{i j}^{k}\right) e_{k}=\partial_{s} \alpha(s) \nabla_{\partial_{t}} V=0 .\right.
\end{aligned}
$$

2. Let $\left(e_{1}(t), e_{2}(t)\right.$ be a parallel orthonormal frame along γ. Let $V=V^{i}(t) e_{i}(t)$ be a vector field along γ.

$$
\left\langle\nabla_{\partial_{t}}^{S^{2}} V, e_{i}\right\rangle=\left\langle\nabla_{\partial_{t}}^{\mathbb{R}^{3}} V, e_{i}\right\rangle=\left\langle\partial_{t} V, e_{i}\right\rangle=\nabla_{\partial_{t}} g\left(V_{e i}\right)
$$

and writing $V=V^{i} e_{i}$,

$$
\partial_{t} V \perp S^{2} \Longleftrightarrow V^{i} \equiv \text { const. }
$$

To conclude notice that

$$
\partial_{t} g\left(V, e_{i}\right)=\partial_{t} V^{i}=g\left(\nabla_{\partial_{t}} V, e_{i}\right)
$$

which implies that the coefficients V^{i} are constant if V is parallel. Moreover, linear combinations of parallel sections are parallel so that

$$
\partial_{t} V \perp S^{2} \Longleftrightarrow V^{i} \equiv \text { const. } \Longleftrightarrow \nabla_{\partial_{t}}^{S^{2}} V=0
$$

3. Given 2., and assuming w.l.o.g. that we are considering the equatorial $S^{1} \subset S^{2}$ as the geodesic γ, for any vector $v \in T_{(0,1,0)} S^{2}$, the parallel transport along γ is exactly the image of v under the rotation of \mathbb{R}^{3} which fixes the z-axis.
4. Using polar coordinates $(\varphi, \theta) \in(0,2 \pi) \times(0, \pi)$ on S^{2}, such that φ is the coordinate describing the change in the planes parallel to $\{z=0\}$, one can check that this frame is parallel when restricted to any curve parametrizing $\{z=0\} \cap S^{2}$. Therefore in this case $(c=0)$ the parallel transport of a vector has constant coefficients in this frame.
When $c \neq 0$, the frame is no longer parallel. Let us first do some preliminary computations to recall the properties of these vector fields:

$$
\begin{gathered}
\partial_{\theta}(r \sin (\theta) \cos (\varphi), r \sin (\theta) \sin (\varphi), r \cos (\theta))=r(\cos (\theta) \cos (\varphi), \cos (\theta) \sin (\varphi),-\sin (\theta)) \\
\left.\partial_{\theta}(p) \cdot \mathbb{R}^{3} p=r^{2} \sin (\theta) \cos (\theta)\left(\sin ^{2}(\varphi)+\cos ^{2}(\varphi)-1\right)\right)=0 \\
\partial_{\varphi}(r \sin (\theta) \cos (\varphi), r \sin (\theta) \sin (\varphi), r \cos (\theta))=r(-\sin (\theta) \sin (\varphi), \sin (\theta) \cos (\varphi), 0) \\
\partial_{\varphi}(p) \cdot \mathbb{R}^{3} p=0
\end{gathered}
$$

A parametrization of $S^{2} \cap\{z=c\}$ is given by

$$
\gamma: t \mapsto\left(\sin \left(\theta_{c}\right) \cos (t), \sin \left(\theta_{c}\right) \sin (t), \cos \left(\theta_{c}\right)\right) .
$$

The metric coefficients for the standard metric on S^{2} in this frame are

$$
g_{\theta \varphi}=0 \quad g_{\varphi \varphi}=\sin ^{2}(\theta) \quad g_{\theta \theta}=1
$$

The Christoffel symbols are given by

$$
\Gamma_{\varphi \varphi}^{\theta}=-\sin (\theta) \cos (\theta) \quad \Gamma_{\theta \varphi}^{\varphi}=\Gamma_{\varphi \theta}^{\varphi}=\frac{\cos (\theta)}{\sin (\theta)}
$$

The parallel transport equation becomes

$$
\begin{gathered}
\nabla_{\partial_{t}} V=\left(\partial_{t} V^{k}+\partial_{t} \gamma^{i} V^{j} \Gamma_{i j}^{k}\right) \partial_{k}=0 \\
\left\{\begin{array}{l}
\partial_{t} V^{\theta}+\partial_{t} \gamma^{\varphi} V^{\varphi} \Gamma_{\varphi \varphi}^{\theta}=\partial_{t} V^{\theta}+\partial_{t} \gamma^{\varphi} V^{\varphi}(-\sin (\theta) \cos (\theta))=0 \\
\partial_{t} V^{\varphi}+\partial_{t} \gamma^{\varphi} V^{\theta} \Gamma_{\varphi \theta}^{\varphi}=\partial_{t} V^{\varphi}+\partial_{t} \gamma^{\varphi} V^{\theta} \frac{\cos (\theta)}{\sin (\theta)}=0
\end{array}\right.
\end{gathered}
$$

where we used $\gamma^{\theta}=$ const. to simplify the second equation. Using $\partial_{t} \gamma^{\varphi}=1$,

$$
\left\{\begin{array}{l}
\partial_{t} V^{\theta}+V^{\varphi}(-\sin (\theta) \cos (\theta))=0 \\
\partial_{t} V^{\varphi}+V^{\theta} \frac{\cos (\theta)}{\sin (\theta)}=0
\end{array}\right.
$$

differentiating once more in t,

$$
\begin{gathered}
\left\{\begin{array}{l}
\partial_{t}^{2} V^{\theta}+\cos ^{2}\left(\theta_{c}\right) V^{\theta}=0 \\
\partial_{t}^{2} V^{\varphi}+\cos ^{2}\left(\theta_{c}\right) V^{\varphi}=0
\end{array}\right. \\
\left\{\begin{array}{l}
V^{\theta}=A \cos \left(\cos \left(\theta_{c}\right) t\right)+B \sin \left(\cos \left(\theta_{c}\right) t\right) \\
V^{\varphi}=
\end{array} C \cos \left(\cos \left(\theta_{c}\right) t\right)+D \sin \left(\cos \left(\theta_{c}\right) t\right) .\right.
\end{gathered}
$$

Solution of 3.4:

1. The metric coefficients with respect to the coordinates $\varphi=\left(\varphi^{1}, \varphi^{2}\right)=(x, y)$ are given by

$$
g_{12}=0, g_{11}=g_{22}=\frac{1}{y^{2}}
$$

The Christoffel symbols can then be computed using

$$
\Gamma_{k l}^{i}=\frac{1}{2} g^{i m}\left(g_{m k, l}+g_{m l, k}-g_{k l, m}\right)
$$

which gives

$$
\Gamma_{11}^{1}=\Gamma_{12}^{2}=\Gamma_{22}^{1}=0 \quad \Gamma_{11}^{2}=\frac{1}{y} \quad \Gamma_{12}^{1}=\Gamma_{22}^{2}=-\frac{1}{y}
$$

2. Following the hint we obtain that the parallel transport equation reduces to

$$
\frac{d \theta}{d t}=-1
$$

which together with $v_{0}=(0,1)$ gives $\theta(t)=\frac{\pi}{2}-t$.
3. If we use the Christoffel symbols obtained in 1. to simplify the geodesic equation we obtain the following characterizations of geodesics $t \mapsto(x(t), y(t))$:

$$
\frac{d^{2} x}{d t^{2}}-\frac{2}{y} \frac{d x}{d t} \frac{d y}{d t}=0 \quad \frac{d^{2} y}{d t^{2}}+\frac{1}{y}\left(\left(\frac{d x}{d t}\right)^{2}-\left(\frac{d y}{d t}\right)^{2}\right)=0
$$

If $\frac{d x}{d t} \neq 0$,

$$
\frac{d}{d t}\left(y \frac{d y}{d t}\left(\frac{d x}{d t}\right)^{-1}\right)=\left(\frac{d y}{d t}\right)^{2}\left(\frac{d x}{d t}\right)^{-1}+y \frac{d^{2} y}{d t^{2}}\left(\frac{d x}{d t}\right)^{-1}-y \frac{d y}{d t}\left(\frac{d x}{d t}\right)^{-2} \frac{d^{2} x}{d t^{2}}
$$

and inserting the geodesic equations from above,

$$
\begin{aligned}
& \frac{d}{d t}\left(y \frac{d y}{d t}\left(\frac{d x}{d t}\right)^{-1}\right)=y \frac{d^{2} y}{d t^{2}}\left(\frac{d x}{d t}\right)^{-1}-\left(\frac{d y}{d t}\right)^{2}\left(\frac{d x}{d t}\right)^{-1} \\
= & -\left(\left(\frac{d x}{d t}\right)^{2}-\left(\frac{d y}{d t}\right)^{2}\right)\left(\frac{d x}{d t}\right)^{-1}-\left(\frac{d y}{d t}\right)^{2}\left(\frac{d x}{d t}\right)^{-1}=-\frac{d x}{d t}
\end{aligned}
$$

By rearranging terms we find the equation

$$
\frac{d^{2}}{d t}\left(x^{2}+y^{2}\right)=0
$$

which is the equation of circles centered at the origin. The case $\frac{d x}{d t}$ corresponds to vertical straight lines.

