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4. Geodesics, Hopf-Rinow theorem

4.1. Geodesic variations.

1. Let γ : [0, 1] → M be a smooth curve in a Riemannian manifold (M, g). Let V be a
vector field along γ with V (0) = V (1) = 0. Show that there exists

γ̃ : (−1, 1) × [0, 1] → M

satisfying γ̃(0, t) = γ(t), γ̃(0, s) = γ(0), γ̃(1, s) = γ(1) and such that V is the
variation vector field of γ̃, i.e. V (t) = ∂sγ̃(s, t).

2. Let γ : [0, 1] × [0, a] → M be a smooth map such that for fixed a0 ∈ [0, a],
γa0 : t 7→ γ(t, a0) is a geodesic parametrized by arc length. Assume that the curve
b 7→ γ(0, b) is orthogonal to the curve γa0 at the point γ(0, a0). Prove that for all
(t0, a0) ∈ [0, 1] × [0, a] the curves b 7→ γ(t0, b) and γa0 are orthogonal where they
intersect.

4.2. Exponential map on SO(n).
Consider M = SO(n) ⊂ Rn×n with the induced metric. Consider p = I ∈ SO(n), show
that

1. TpM = {B ∈ Rn×n |B +BT = 0}

2. expp(B) =
∞∑

i=0
1
i!B

i (matrix exponential).

4.3. Riemannian structure on TTM .
Let (p, v) ∈ TM and V,W ∈ T(p,v)TM . Choose curves in TM with

α : t 7→ (p(t), v(t)) β : s 7→ (q(s), w(s)),

p(0) = q(0) = p v(0) = w(0) = v α′(0) = V β′(0) = W.

Define an inner product on TM by

g(p,v)(V,W ) = gM
p (dπ(V ), dπ(W )) + gM

p (∇M
∂t
v(0),∇M

∂t
w(0)) .

1. Prove that this formula defines a well-defined Riemannian metric on TM .
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2. A vector (p, v) ∈ TM that is orthogonal to the vectors tangent to the fiber π−1(p) ∼=
TpM is called a hotizontal vector. A curve γ : t 7→ (p(t), v(t)) ∈ TM is defined to
be horizontal if its tangent vector γ′(t) ∈ Tγ(t)TM is horizontal for all t.
Prove that the curve γ(t) is horizontal if and only if v(t) is parallel along p(t) with
respect to the Riemannian structure and Levi-Civita connection of M .

3. Prove that the geodesic vector field on TTM (see also proof of 4.1) is horizontal at
every point.

4. Prove that the flow lines of the geodesic vector field are geodesics on TM for the
metric introduced in 1.

4.4. Applications of Hopf-Rinow.
Let (M, g) be a homogeneous Riemannian manifold, i.e. the isometry group of M acts
transitively on M . Prove that for any two points p, q ∈ M there exists a geodesic γ
between them satisfying L(γ) = d(p, q).

4.5. Existence of closed geodesics.
Let (M, g) be a compact Riemannian manifold and c0 : S1 → M a continuous closed
curve. The purpose of this exercise is to show that in the family of all continuous and
piece-wise C1 curves c : S1 → M which are homotopic to c0, there is a shortest one and it
is a geodesic.

a) Show that c0 is homotopic to a piece-wise C1-curve c1 with finite length.

b) Let L := infc L(c) be the infimum over all piece-wise C1 curves c : S1 → M homotopic
to c0 and consider a minimizing sequence (cn : S1 → M)n with limn L(cn) = L. Use
compactness of M to construct a piece-wise C1-curve c : S1 → M with length L.
Hint. Cover M with simply connected balls with the property that every two points
in a ball are joined by a unique distance minimizing geodesic.

c) Conclude by showing that c is homotopic to c0 and a geodesic.

4. Solutions

Solution of 4.1:
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1. Since our curve is embedded, V can be extended to a smooth compactly supported
vector field Ṽ ∈ Γ(TM) which agrees with V on γ. Since the support of Ṽ is
compact, its flow ϕt is defined for all times. Define

γ̃(s, t) = ψs(γ(t)).

Then γ̃(0, t) = ψ0(γ(t)) = id(γ(t)) = γ(t). Moreover γ̃(s, 0) = ψs(γ(0)) = γ(0) since
V (γ(0)) = 0 implies that the point is a fixed point for the flow. The same holds for
γ(1).

2.
d

dt
g(∂tγ, ∂sγ) = g(∇t∂tγ, ∂sγ) + g(∂tγ,∇t∂sγ) = 1

2
d

ds
g(∂tγ, ∂tγ) = 0

From this computation we deduce that the two curves are orthogonal where they
intersect, as long as this holds at one point.

Solution of 4.2: We will present a proof using notation that will be introduced this
week.

Solution of 4.3:

1. g is symmetric and bilinear by definition. It remains to check that it is positive
definite.
Let {x1, ..., xm} be coordinates for M around p and let {x1, ..., xm, y1, ..., ym} be
the coordinates on TM obtained from the first chart (v =

m∑
i=1

yi
∂

∂xi
). The tangent

vectors V ∈ Tp,vTM can be represented in local coordinates

V =
m∑

i=1
αi ∂

∂xi

+ θi ∂

∂yi

Assume gp,v(V, V ) = 0, then both terms have to vanish:

gM
p (dπ(V ), dπ(V )) = 0 gM

p (∇M
∂t
v(0),∇M

∂t
v(0)) = 0

and since gM is positive definite this implies

dπ(V ) = 0 ∇∂tv(0) = 0 .
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Using the local coordinates from above,

dπp,v(V ) =
m∑

i=1
αi ∂

∂xi

(∇∂tv(0))k = v̇k(0) + Γk
ijdp

i(∂t)vj(0) = θk + Γk
ijα

ivj(0) .

Positive definiteness now follows from the fact that dπ(V ) = 0 =⇒ αi = 0 for all i
and given αi ≡ 0, ∇∂tv(0) = 0 =⇒ θk = 0 for all k.

2. Using the notation from part 1, a vector V is horizontal if the following holds: for
all W = (q̇(0), β̇(0)) ∈ Tp,vTM such that dπp,v(W ) = 0,

gT M(V,W ) = 0 = gM(∇∂tv(0),∇∂tβ(0))

Choosing the vector W = (q̇(0), v̇(0)) we see that ∇∂tv(0) = 0. This can be done at
any point of the curve and we conclude that the curve is horizontal if and only if it
is parallel.

3+4. Let γ(t) = (p(t), v(t)) be a curve in TTM . Then, by definition of the metric gT M ,

LM(p(t)) ≤ LT M(γ(t)) with equality iff γ is horizontal

By the local minimizing properties of geodesics, γ(t) = (c(t), c′(t)) is a geodesic
in TM whenever c(t) is a geodesic in M . Since geodesics are the flow lines of the
geodesic vector field the claims follows.

Solution of 4.4: Let p ∈ M . Pick r > 0 such that expp is defined on B(0, r) ⊂ TMp. Let
v ∈ TpM be a tangent vector and let (αv, ωv) be the maximal interval, where the geodesic
cv satisfying cv(0) = p and ċv(0) = v is defined. We need to show that (αv, ωv) = (−∞,∞).
Suppose that ωv < ∞. Let 0 < ϵ < r. Consider q = cv(ωv − ϵ) ∈ M . By assumption,
there exists an isometry Φ of M such that Φ(p) = q. Put w := DΦ−1

q (ċv(ωv − ϵ)) ∈ TpM

and let cw be the associated geodesic. Then Φ ◦ cw is a geodesic starting at q that extends
cv to (αv, ωv + r − ϵ). This is a contradiction to the maximality of ωv. Hence ωv = ∞.
Similarly one shows αv = −∞.

This shows that expp(tv) is defined on (−∞,∞) and therefore we can prove the claim
using the theorem of Hopf-Rinow.
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Solution of 4.5: a) Let us first prove that c0 is homotopic to a piece-wise C1-curve c1.
To this aim, we split c0 into finitely many paths γi : [0, 1] → M such that γi(1) = γi+1(0),
γn(1) = γ1(0) and γi is contained in a charts {(ϕi, Ui)}n

i=1 with Ui simply-connected. Then
γi is homotopic (relative to the endpoints) to a C1-curve γ̃i and by connecting the γ̃i’s we
get a piece-wise C1-curve c1 which is homotopic to c0. Then c1 has finite length L(c1).

b) Let L := infc L(c) < ∞ be the infimum over all curves c : S1 → M which are
piece-wise C1 and homotopic to c0 and consider a minimizing sequence, i.e. a sequence
(cn : S1 → M)n∈N with limn→∞ L(cn) = L.

We may assume that the curves cn : [0, 1] → M are parametrized proportional to arclength,
i.e. L(cn|[a,b]) = |b− a| · L(cn).

As M is compact, there is some r > 0 and points qq, . . . , qn ∈ M such that the balls
B(q1, r), . . . , B(qn, r) cover M , for all q, q′ ∈ B(qi, 3r) there is a unique distance minimizing
geodesic joining q to q′ of length < 6r and the balls B(qi, 6r) are simply connected.

Fix some N ∈ N such that 1
N
< r

L
and define tk := k

N
for k = 0, . . . , N . Consider now

the sequences (cn(tk))n∈N. By compactness of M , we may assume (by possibly passing to
subsequences) that cn(tk) → pk for each k = 0, . . . , N . Therefore

d(pk, pk+1) ≤ lim sup
n→∞

d(cn(tk), cn(tk+1) ≤ lim sup
n→∞

1
N
L(cn) < r.

Take
{

q∈
q1,...,qn

}
such that pk ∈ B(q, r), then pk+1 ⊂ B(q, 3r) and therefore we can define

a continuous, piece-wise C1-curve c : [0, 1] → M by concatenating the unique distance
minimizing geodesics between pk and pk+1.

For the length of c we have

L(c) =
N−1∑
k=0

L
(
c|[tk,tk+1]

)
=

N−1∑
k=0

d(pk, pk+1) ≤ N lim sup
n→∞

1
N
L(cn) = L.

c) It remains to prove that c is homotopic to c0. Observe that for n large enough, we have
c([tk, tk+1]), cn([tk, tk+1]) ⊂ B(q, 3r).

Since B(q, 6r) is simply-connected there is a homotopy from cn|[ k
N

, k+1
N ] to c|[ k

N
, k+1

N ] with
the endpoints following the unique geodesics from cn(tk) to pk and from cn(tk+1) to pk+1,
respectively. Combining this homotopies, we get a homotopy from cn to c.

Observe that c is locally length minimizing and hence is a geodesic.
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