4. Geodesics, Hopf-Rinow theorem

4.1. Geodesic variations.

1. Let $\gamma : [0,1] \to M$ be a smooth curve in a Riemannian manifold (M,g). Let V be a vector field along γ with V(0) = V(1) = 0. Show that there exists

$$\tilde{\gamma}:(-1,1)\times[0,1]\to M$$

satisfying $\tilde{\gamma}(0,t) = \gamma(t)$, $\tilde{\gamma}(0,s) = \gamma(0)$, $\tilde{\gamma}(1,s) = \gamma(1)$ and such that V is the variation vector field of $\tilde{\gamma}$, i.e. $V(t) = \partial_s \tilde{\gamma}(s,t)$.

2. Let $\gamma : [0,1] \times [0,a] \to M$ be a smooth map such that for fixed $a_0 \in [0,a]$, $\gamma_{a_0} : t \mapsto \gamma(t,a_0)$ is a geodesic parametrized by arc length. Assume that the curve $b \mapsto \gamma(0,b)$ is orthogonal to the curve γ_{a_0} at the point $\gamma(0,a_0)$. Prove that for all $(t_0,a_0) \in [0,1] \times [0,a]$ the curves $b \mapsto \gamma(t_0,b)$ and γ_{a_0} are orthogonal where they intersect.

4.2. Exponential map on SO(n).

Consider $M = SO(n) \subset \mathbb{R}^{n \times n}$ with the induced metric. Consider $p = I \in SO(n)$, show that

- 1. $T_p M = \{ B \in \mathbb{R}^{n \times n} | B + B^T = 0 \}$
- 2. $\exp_p(B) = \sum_{i=0}^{\infty} \frac{1}{i!} B^i$ (matrix exponential).

4.3. Riemannian structure on TTM.

Let $(p, v) \in TM$ and $V, W \in T_{(p,v)}TM$. Choose curves in TM with

$$\alpha: t \mapsto (p(t), v(t)) \quad \beta: s \mapsto (q(s), w(s)),$$

$$p(0) = q(0) = p$$
 $v(0) = w(0) = v$ $\alpha'(0) = V$ $\beta'(0) = W.$

Define an inner product on TM by

$$g_{(p,v)}(V,W) = g_p^M(d\pi(V), d\pi(W)) + g_p^M(\nabla_{\partial_t}^M v(0), \nabla_{\partial_t}^M w(0)).$$

1. Prove that this formula defines a well-defined Riemannian metric on TM.

- 2. A vector $(p, v) \in TM$ that is orthogonal to the vectors tangent to the fiber $\pi^{-1}(p) \cong T_p M$ is called a <u>hotizontal vector</u>. A curve $\gamma : t \mapsto (p(t), v(t)) \in TM$ is defined to be horizontal if its tangent vector $\gamma'(t) \in T_{\gamma(t)}TM$ is horizontal for all t. Prove that the curve $\gamma(t)$ is horizontal if and only if v(t) is parallel along p(t) with respect to the Riemannian structure and Levi-Civita connection of M.
- 3. Prove that the geodesic vector field on TTM (see also proof of 4.1) is horizontal at every point.
- 4. Prove that the flow lines of the geodesic vector field are geodesics on TM for the metric introduced in 1.

4.4. Applications of Hopf-Rinow.

Let (M, g) be a <u>homogeneous Riemannian manifold</u>, i.e. the isometry group of M acts transitively on M. Prove that for any two points $p, q \in M$ there exists a geodesic γ between them satisfying $L(\gamma) = d(p, q)$.

4.5. Existence of closed geodesics.

Let (M, g) be a compact Riemannian manifold and $c_0: S^1 \to M$ a continuous closed curve. The purpose of this exercise is to show that in the family of all continuous and piece-wise C^1 curves $c: S^1 \to M$ which are homotopic to c_0 , there is a shortest one and it is a geodesic.

- a) Show that c_0 is homotopic to a piece-wise C^1 -curve c_1 with finite length.
- b) Let $L := \inf_c L(c)$ be the infimum over all piece-wise C^1 curves $c \colon S^1 \to M$ homotopic to c_0 and consider a minimizing sequence $(c_n \colon S^1 \to M)_n$ with $\lim_n L(c_n) = L$. Use compactness of M to construct a piece-wise C^1 -curve $c \colon S^1 \to M$ with length L. *Hint.* Cover M with simply connected balls with the property that every two points in a ball are joined by a unique distance minimizing geodesic.
- c) Conclude by showing that c is homotopic to c_0 and a geodesic.

4. Solutions

Solution of 4.1:

1. Since our curve is embedded, V can be extended to a smooth compactly supported vector field $\tilde{V} \in \Gamma(TM)$ which agrees with V on γ . Since the support of \tilde{V} is compact, its flow ϕ_t is defined for all times. Define

$$\tilde{\gamma}(s,t) = \psi_s(\gamma(t)).$$

Then $\tilde{\gamma}(0,t) = \psi_0(\gamma(t)) = id(\gamma(t)) = \gamma(t)$. Moreover $\tilde{\gamma}(s,0) = \psi_s(\gamma(0)) = \gamma(0)$ since $V(\gamma(0)) = 0$ implies that the point is a fixed point for the flow. The same holds for $\gamma(1)$.

2.

$$\frac{d}{dt}g(\partial_t\gamma,\partial_s\gamma) = g(\nabla_t\partial_t\gamma,\partial_s\gamma) + g(\partial_t\gamma,\nabla_t\partial_s\gamma) = \frac{1}{2}\frac{d}{ds}g(\partial_t\gamma,\partial_t\gamma) = 0$$

From this computation we deduce that the two curves are orthogonal where they intersect, as long as this holds at one point.

Solution of 4.2: We will present a proof using notation that will be introduced this week.

Solution of 4.3:

1. g is symmetric and bilinear by definition. It remains to check that it is positive definite.

Let $\{x_1, ..., x_m\}$ be coordinates for M around p and let $\{x_1, ..., x_m, y_1, ..., y_m\}$ be the coordinates on TM obtained from the first chart $(v = \sum_{i=1}^m y_i \frac{\partial}{\partial x_i})$. The tangent vectors $V \in T_{p,v}TM$ can be represented in local coordinates

$$V = \sum_{i=1}^{m} \alpha^{i} \frac{\partial}{\partial x_{i}} + \theta^{i} \frac{\partial}{\partial y_{i}}$$

Assume $g_{p,v}(V, V) = 0$, then both terms have to vanish:

$$g_p^M(d\pi(V), d\pi(V)) = 0 \quad g_p^M(\nabla_{\partial_t}^M v(0), \nabla_{\partial_t}^M v(0)) = 0$$

and since g^M is positive definite this implies

$$d\pi(V) = 0 \quad \nabla_{\partial_t} v(0) = 0$$

Using the local coordinates from above,

$$d\pi_{p,v}(V) = \sum_{i=1}^{m} \alpha^{i} \frac{\partial}{\partial x_{i}}$$
$$(\nabla_{\partial_{t}} v(0))^{k} = \dot{v}^{k}(0) + \Gamma_{ij}^{k} dp^{i}(\partial_{t}) v^{j}(0) = \theta^{k} + \Gamma_{ij}^{k} \alpha^{i} v^{j}(0)$$

Positive definiteness now follows from the fact that $d\pi(V) = 0 \implies \alpha^i = 0$ for all iand given $\alpha^i \equiv 0$, $\nabla_{\partial_t} v(0) = 0 \implies \theta^k = 0$ for all k.

2. Using the notation from part 1, a vector V is horizontal if the following holds: for all $W = (\dot{q}(0), \dot{\beta}(0)) \in T_{p,v}TM$ such that $d\pi_{p,v}(W) = 0$,

$$g_{TM}(V,W) = 0 = g^M(\nabla_{\partial_t} v(0), \nabla_{\partial_t} \beta(0))$$

Choosing the vector $W = (\dot{q}(0), \dot{v}(0))$ we see that $\nabla_{\partial_t} v(0) = 0$. This can be done at any point of the curve and we conclude that the curve is horizontal if and only if it is parallel.

3+4. Let $\gamma(t) = (p(t), v(t))$ be a curve in TTM. Then, by definition of the metric g_{TM} ,

 $L^{M}(p(t)) \leq L^{TM}(\gamma(t))$ with equality iff γ is horizontal

By the local minimizing properties of geodesics, $\gamma(t) = (c(t), c'(t))$ is a geodesic in TM whenever c(t) is a geodesic in M. Since geodesics are the flow lines of the geodesic vector field the claims follows.

Solution of 4.4: Let $p \in M$. Pick r > 0 such that \exp_p is defined on $B(0, r) \subset TM_p$. Let $v \in T_pM$ be a tangent vector and let (α_v, ω_v) be the maximal interval, where the geodesic c_v satisfying $c_v(0) = p$ and $\dot{c}_v(0) = v$ is defined. We need to show that $(\alpha_v, \omega_v) = (-\infty, \infty)$. Suppose that $\omega_v < \infty$. Let $0 < \epsilon < r$. Consider $q = c_v(\omega_v - \epsilon) \in M$. By assumption, there exists an isometry Φ of M such that $\Phi(p) = q$. Put $w := D\Phi_q^{-1}(\dot{c}_v(\omega_v - \epsilon)) \in T_pM$ and let c_w be the associated geodesic. Then $\Phi \circ c_w$ is a geodesic starting at q that extends c_v to $(\alpha_v, \omega_v + r - \epsilon)$. This is a contradiction to the maximality of ω_v . Hence $\omega_v = \infty$.

This shows that $\exp_p(tv)$ is defined on $(-\infty, \infty)$ and therefore we can prove the claim using the theorem of Hopf-Rinow.

Solution of 4.5: a) Let us first prove that c_0 is homotopic to a piece-wise C^1 -curve c_1 . To this aim, we split c_0 into finitely many paths $\gamma_i : [0, 1] \to M$ such that $\gamma_i(1) = \gamma_{i+1}(0)$, $\gamma_n(1) = \gamma_1(0)$ and γ_i is contained in a charts $\{(\phi_i, U_i)\}_{i=1}^n$ with U_i simply-connected. Then γ_i is homotopic (relative to the endpoints) to a C^1 -curve $\tilde{\gamma}_i$ and by connecting the $\tilde{\gamma}_i$'s we get a piece-wise C^1 -curve c_1 which is homotopic to c_0 . Then c_1 has finite length $L(c_1)$.

b) Let $L := \inf_c L(c) < \infty$ be the infimum over all curves $c \colon S^1 \to M$ which are piece-wise C^1 and homotopic to c_0 and consider a minimizing sequence, i.e. a sequence $(c_n \colon S^1 \to M)_{n \in \mathbb{N}}$ with $\lim_{n \to \infty} L(c_n) = L$.

We may assume that the curves $c_n \colon [0,1] \to M$ are parametrized proportional to arclength, i.e. $L(c_n|_{[a,b]}) = |b-a| \cdot L(c_n)$.

As M is compact, there is some r > 0 and points $q_q, \ldots, q_n \in M$ such that the balls $B(q_1, r), \ldots, B(q_n, r)$ cover M, for all $q, q' \in B(q_i, 3r)$ there is a unique distance minimizing geodesic joining q to q' of length < 6r and the balls $B(q_i, 6r)$ are simply connected.

Fix some $N \in \mathbb{N}$ such that $\frac{1}{N} < \frac{r}{L}$ and define $t_k := \frac{k}{N}$ for $k = 0, \ldots, N$. Consider now the sequences $(c_n(t_k))_{n \in \mathbb{N}}$. By compactness of M, we may assume (by possibly passing to subsequences) that $c_n(t_k) \to p_k$ for each $k = 0, \ldots, N$. Therefore

$$d(p_k, p_{k+1}) \le \limsup_{n \to \infty} d(c_n(t_k), c_n(t_{k+1}) \le \limsup_{n \to \infty} \frac{1}{N} L(c_n) < r.$$

Take ${q \in \\ q_1, \dots, q_n}$ such that $p_k \in B(q, r)$, then $p_{k+1} \subset B(q, 3r)$ and therefore we can define a continuous, piece-wise C^1 -curve $c : [0, 1] \to M$ by concatenating the unique distance minimizing geodesics between p_k and p_{k+1} .

For the length of c we have

$$L(c) = \sum_{k=0}^{N-1} L\left(c|_{[t_k, t_{k+1}]}\right) = \sum_{k=0}^{N-1} d(p_k, p_{k+1}) \le N \limsup_{n \to \infty} \frac{1}{N} L(c_n) = L.$$

c) It remains to prove that c is homotopic to c_0 . Observe that for n large enough, we have $c([t_k, t_{k+1}]), c_n([t_k, t_{k+1}]) \subset B(q, 3r).$

Since B(q, 6r) is simply-connected there is a homotopy from $c_n |_{\left[\frac{k}{N}, \frac{k+1}{N}\right]}$ to $c |_{\left[\frac{k}{N}, \frac{k+1}{N}\right]}$ with the endpoints following the unique geodesics from $c_n(t_k)$ to p_k and from $c_n(t_{k+1})$ to p_{k+1} , respectively. Combining this homotopies, we get a homotopy from c_n to c.

Observe that c is locally length minimizing and hence is a geodesic.