4. Geodesics, Hopf-Rinow theorem

4.1. Geodesic variations.

1. Let $\gamma:[0,1] \rightarrow M$ be a smooth curve in a Riemannian manifold (M, g). Let V be a vector field along γ with $V(0)=V(1)=0$. Show that there exists

$$
\tilde{\gamma}:(-1,1) \times[0,1] \rightarrow M
$$

satisfying $\tilde{\gamma}(0, t)=\gamma(t), \tilde{\gamma}(0, s)=\gamma(0), \tilde{\gamma}(1, s)=\gamma(1)$ and such that V is the variation vector field of $\tilde{\gamma}$, i.e. $V(t)=\partial_{s} \tilde{\gamma}(s, t)$.
2. Let $\gamma:[0,1] \times[0, a] \rightarrow M$ be a smooth map such that for fixed $a_{0} \in[0, a]$, $\gamma_{a_{0}}: t \mapsto \gamma\left(t, a_{0}\right)$ is a geodesic parametrized by arc length. Assume that the curve $b \mapsto \gamma(0, b)$ is orthogonal to the curve $\gamma_{a_{0}}$ at the point $\gamma\left(0, a_{0}\right)$. Prove that for all $\left(t_{0}, a_{0}\right) \in[0,1] \times[0, a]$ the curves $b \mapsto \gamma\left(t_{0}, b\right)$ and $\gamma_{a_{0}}$ are orthogonal where they intersect.

4.2. Exponential map on $S O(n)$.

Consider $M=S O(n) \subset \mathbb{R}^{n \times n}$ with the induced metric. Consider $p=I \in S O(n)$, show that

1. $T_{p} M=\left\{B \in \mathbb{R}^{n \times n} \mid B+B^{T}=0\right\}$
2. $\exp _{p}(B)=\sum_{i=0}^{\infty} \frac{1}{i!} B^{i}$ (matrix exponential).

4.3. Riemannian structure on $T T M$.

Let $(p, v) \in T M$ and $V, W \in T_{(p, v)} T M$. Choose curves in $T M$ with

$$
\begin{gathered}
\alpha: t \mapsto(p(t), v(t)) \quad \beta: s \mapsto(q(s), w(s)) \\
p(0)=q(0)=p \quad v(0)=w(0)=v \quad \alpha^{\prime}(0)=V \quad \beta^{\prime}(0)=W .
\end{gathered}
$$

Define an inner product on $T M$ by

$$
g_{(p, v)}(V, W)=g_{p}^{M}(d \pi(V), d \pi(W))+g_{p}^{M}\left(\nabla_{\partial_{t}}^{M} v(0), \nabla_{\partial_{t}}^{M} w(0)\right) .
$$

1. Prove that this formula defines a well-defined Riemannian metric on $T M$.
2. A vector $(p, v) \in T M$ that is orthogonal to the vectors tangent to the fiber $\pi^{-1}(p) \cong$ $T_{p} M$ is called a hotizontal vector. A curve $\gamma: t \mapsto(p(t), v(t)) \in T M$ is defined to be horizontal if its tangent vector $\gamma^{\prime}(t) \in T_{\gamma(t)} T M$ is horizontal for all t.
Prove that the curve $\gamma(t)$ is horizontal if and only if $v(t)$ is parallel along $p(t)$ with respect to the Riemannian structure and Levi-Civita connection of M.
3. Prove that the geodesic vector field on TTM (see also proof of 4.1) is horizontal at every point.
4. Prove that the flow lines of the geodesic vector field are geodesics on $T M$ for the metric introduced in 1 .

4.4. Applications of Hopf-Rinow.

Let (M, g) be a homogeneous Riemannian manifold, i.e. the isometry group of M acts transitively on M. Prove that for any two points $p, q \in M$ there exists a geodesic γ between them satisfying $L(\gamma)=d(p, q)$.

4.5. Existence of closed geodesics.

Let (M, g) be a compact Riemannian manifold and $c_{0}: S^{1} \rightarrow M$ a continuous closed curve. The purpose of this exercise is to show that in the family of all continuous and piece-wise C^{1} curves $c: S^{1} \rightarrow M$ which are homotopic to c_{0}, there is a shortest one and it is a geodesic.
a) Show that c_{0} is homotopic to a piece-wise C^{1}-curve c_{1} with finite length.
b) Let $L:=\inf _{c} L(c)$ be the infimum over all piece-wise C^{1} curves $c: S^{1} \rightarrow M$ homotopic to c_{0} and consider a minimizing sequence $\left(c_{n}: S^{1} \rightarrow M\right)_{n}$ with $\lim _{n} L\left(c_{n}\right)=L$. Use compactness of M to construct a piece-wise C^{1}-curve $c: S^{1} \rightarrow M$ with length L. Hint. Cover M with simply connected balls with the property that every two points in a ball are joined by a unique distance minimizing geodesic.
c) Conclude by showing that c is homotopic to c_{0} and a geodesic.

4. Solutions

Solution of 4.1:

1. Since our curve is embedded, V can be extended to a smooth compactly supported vector field $\tilde{V} \in \Gamma(T M)$ which agrees with V on γ. Since the support of \tilde{V} is compact, its flow ϕ_{t} is defined for all times. Define

$$
\tilde{\gamma}(s, t)=\psi_{s}(\gamma(t))
$$

Then $\tilde{\gamma}(0, t)=\psi_{0}(\gamma(t))=i d(\gamma(t))=\gamma(t)$. Moreover $\tilde{\gamma}(s, 0)=\psi_{s}(\gamma(0))=\gamma(0)$ since $V(\gamma(0))=0$ implies that the point is a fixed point for the flow. The same holds for $\gamma(1)$.
2.

$$
\frac{d}{d t} g\left(\partial_{t} \gamma, \partial_{s} \gamma\right)=g\left(\nabla_{t} \partial_{t} \gamma, \partial_{s} \gamma\right)+g\left(\partial_{t} \gamma, \nabla_{t} \partial_{s} \gamma\right)=\frac{1}{2} \frac{d}{d s} g\left(\partial_{t} \gamma, \partial_{t} \gamma\right)=0
$$

From this computation we deduce that the two curves are orthogonal where they intersect, as long as this holds at one point.

Solution of 4.2: We will present a proof using notation that will be introduced this week.

Solution of 4.3:

1. g is symmetric and bilinear by definition. It remains to check that it is positive definite.
Let $\left\{x_{1}, \ldots, x_{m}\right\}$ be coordinates for M around p and let $\left\{x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}\right\}$ be the coordinates on $T M$ obtained from the first chart $\left(v=\sum_{i=1}^{m} y_{i} \frac{\partial}{\partial x_{i}}\right)$. The tangent vectors $V \in T_{p, v} T M$ can be represented in local coordinates

$$
V=\sum_{i=1}^{m} \alpha^{i} \frac{\partial}{\partial x_{i}}+\theta^{i} \frac{\partial}{\partial y_{i}}
$$

Assume $g_{p, v}(V, V)=0$, then both terms have to vanish:

$$
g_{p}^{M}(d \pi(V), d \pi(V))=0 \quad g_{p}^{M}\left(\nabla_{\partial_{t}}^{M} v(0), \nabla_{\partial_{t}}^{M} v(0)\right)=0
$$

and since g^{M} is positive definite this implies

$$
d \pi(V)=0 \quad \nabla_{\partial_{t}} v(0)=0
$$

Using the local coordinates from above,

$$
\begin{gathered}
d \pi_{p, v}(V)=\sum_{i=1}^{m} \alpha^{i} \frac{\partial}{\partial x_{i}} \\
\left(\nabla_{\partial_{t}} v(0)\right)^{k}=\dot{v}^{k}(0)+\Gamma_{i j}^{k} d p^{i}\left(\partial_{t}\right) v^{j}(0)=\theta^{k}+\Gamma_{i j}^{k} \alpha^{i} v^{j}(0)
\end{gathered}
$$

Positive definiteness now follows from the fact that $d \pi(V)=0 \Longrightarrow \alpha^{i}=0$ for all i and given $\alpha^{i} \equiv 0, \nabla_{\partial_{t}} v(0)=0 \Longrightarrow \theta^{k}=0$ for all k.
2. Using the notation from part 1 , a vector V is horizontal if the following holds: for all $W=(\dot{q}(0), \dot{\beta}(0)) \in T_{p, v} T M$ such that $d \pi_{p, v}(W)=0$,

$$
g_{T M}(V, W)=0=g^{M}\left(\nabla_{\partial_{t}} v(0), \nabla_{\partial_{t}} \beta(0)\right)
$$

Choosing the vector $W=(\dot{q}(0), \dot{v}(0))$ we see that $\nabla_{\partial_{t}} v(0)=0$. This can be done at any point of the curve and we conclude that the curve is horizontal if and only if it is parallel.
$3+4$. Let $\gamma(t)=(p(t), v(t))$ be a curve in TTM. Then, by definition of the metric $g_{T M}$,

$$
L^{M}(p(t)) \leq L^{T M}(\gamma(t)) \text { with equality iff } \gamma \text { is horizontal }
$$

By the local minimizing properties of geodesics, $\gamma(t)=\left(c(t), c^{\prime}(t)\right)$ is a geodesic in $T M$ whenever $c(t)$ is a geodesic in M. Since geodesics are the flow lines of the geodesic vector field the claims follows.

Solution of 4.4: Let $p \in M$. Pick $r>0$ such that $\exp _{p}$ is defined on $B(0, r) \subset T M_{p}$. Let $v \in T_{p} M$ be a tangent vector and let $\left(\alpha_{v}, \omega_{v}\right)$ be the maximal interval, where the geodesic c_{v} satisfying $c_{v}(0)=p$ and $\dot{c}_{v}(0)=v$ is defined. We need to show that $\left(\alpha_{v}, \omega_{v}\right)=(-\infty, \infty)$. Suppose that $\omega_{v}<\infty$. Let $0<\epsilon<r$. Consider $q=c_{v}\left(\omega_{v}-\epsilon\right) \in M$. By assumption, there exists an isometry Φ of M such that $\Phi(p)=q$. Put $w:=D \Phi_{q}^{-1}\left(\dot{c}_{v}\left(\omega_{v}-\epsilon\right)\right) \in T_{p} M$ and let c_{w} be the associated geodesic. Then $\Phi \circ c_{w}$ is a geodesic starting at q that extends c_{v} to $\left(\alpha_{v}, \omega_{v}+r-\epsilon\right)$. This is a contradiction to the maximality of ω_{v}. Hence $\omega_{v}=\infty$. Similarly one shows $\alpha_{v}=-\infty$.

This shows that $\exp _{p}(t v)$ is defined on $(-\infty, \infty)$ and therefore we can prove the claim using the theorem of Hopf-Rinow.

Solution of 4.5: a) Let us first prove that c_{0} is homotopic to a piece-wise C^{1}-curve c_{1}. To this aim, we split c_{0} into finitely many paths $\gamma_{i}:[0,1] \rightarrow M$ such that $\gamma_{i}(1)=\gamma_{i+1}(0)$, $\gamma_{n}(1)=\gamma_{1}(0)$ and γ_{i} is contained in a charts $\left\{\left(\phi_{i}, U_{i}\right)\right\}_{i=1}^{n}$ with U_{i} simply-connected. Then γ_{i} is homotopic (relative to the endpoints) to a C^{1}-curve $\tilde{\gamma}_{i}$ and by connecting the $\tilde{\gamma}_{i}$'s we get a piece-wise C^{1}-curve c_{1} which is homotopic to c_{0}. Then c_{1} has finite length $L\left(c_{1}\right)$.
b) Let $L:=\inf _{c} L(c)<\infty$ be the infimum over all curves $c: S^{1} \rightarrow M$ which are piece-wise C^{1} and homotopic to c_{0} and consider a minimizing sequence, i.e. a sequence $\left(c_{n}: S^{1} \rightarrow M\right)_{n \in \mathbb{N}}$ with $\lim _{n \rightarrow \infty} L\left(c_{n}\right)=L$.

We may assume that the curves $c_{n}:[0,1] \rightarrow M$ are parametrized proportional to arclength, i.e. $L\left(c_{n} \mid[a, b]\right)=|b-a| \cdot L\left(c_{n}\right)$.

As M is compact, there is some $r>0$ and points $q_{q}, \ldots, q_{n} \in M$ such that the balls $B\left(q_{1}, r\right), \ldots, B\left(q_{n}, r\right)$ cover M, for all $q, q^{\prime} \in B\left(q_{i}, 3 r\right)$ there is a unique distance minimizing geodesic joining q to q^{\prime} of length $<6 r$ and the balls $B\left(q_{i}, 6 r\right)$ are simply connected.

Fix some $N \in \mathbb{N}$ such that $\frac{1}{N}<\frac{r}{L}$ and define $t_{k}:=\frac{k}{N}$ for $k=0, \ldots, N$. Consider now the sequences $\left(c_{n}\left(t_{k}\right)\right)_{n \in \mathbb{N}}$. By compactness of M, we may assume (by possibly passing to subsequences) that $c_{n}\left(t_{k}\right) \rightarrow p_{k}$ for each $k=0, \ldots, N$. Therefore

$$
d\left(p_{k}, p_{k+1}\right) \leq \limsup _{n \rightarrow \infty} d\left(c_{n}\left(t_{k}\right), c_{n}\left(t_{k+1}\right) \leq \limsup _{n \rightarrow \infty} \frac{1}{N} L\left(c_{n}\right)<r .\right.
$$

Take $\left\{\begin{array}{c}q \in \\ q_{1}, \ldots, q_{n}\end{array}\right\}$ such that $p_{k} \in B(q, r)$, then $p_{k+1} \subset B(q, 3 r)$ and therefore we can define a continuous, piece-wise C^{1}-curve $c:[0,1] \rightarrow M$ by concatenating the unique distance minimizing geodesics between p_{k} and p_{k+1}.

For the length of c we have

$$
L(c)=\sum_{k=0}^{N-1} L\left(\left.c\right|_{\left[t_{k}, t_{k+1}\right]}\right)=\sum_{k=0}^{N-1} d\left(p_{k}, p_{k+1}\right) \leq N \limsup _{n \rightarrow \infty} \frac{1}{N} L\left(c_{n}\right)=L
$$

c) It remains to prove that c is homotopic to c_{0}. Observe that for n large enough, we have $c\left(\left[t_{k}, t_{k+1}\right]\right), c_{n}\left(\left[t_{k}, t_{k+1}\right]\right) \subset B(q, 3 r)$.

Since $B(q, 6 r)$ is simply-connected there is a homotopy from $\left.c_{n}\right|_{\left[\frac{k}{N}, \frac{k+1}{N}\right]}$ to $c_{\left[\frac{k}{N}, \frac{k+1}{N}\right]}$ with the endpoints following the unique geodesics from $c_{n}\left(t_{k}\right)$ to p_{k} and from $c_{n}\left(t_{k+1}\right)$ to p_{k+1}, respectively. Combining this homotopies, we get a homotopy from c_{n} to c.

Observe that c is locally length minimizing and hence is a geodesic.

