5. Curvature

5.1. Ricci curvature.

Let (M, g) be a 3 -dimensional Riemannian manifold. Show the following:

1. The Ricci curvature Ric uniquely determines the Riemannian curvature tensor R.
2. If M is an Einstein manifold, that is, a Riemannian manifold (M, g) with Ric $=k g$ for some $k \in \mathbb{R}$, then the sectional curvature sec is constant.

5.2. Metric and Riemannian isometries.

Let (M, g) and (\bar{M}, \bar{g}) be two connected Riemannian manifolds with induced distance functions d and \bar{d}, respectively. Further, let $f:(M, d) \rightarrow(\bar{M}, \bar{d})$ be an isometry of metric spaces, i.e. f is surjective and for all $p, p^{\prime} \in M$ we have $\bar{d}\left(f(p), f\left(p^{\prime}\right)\right)=d\left(p, p^{\prime}\right)$.

1. Prove that for every geodesic γ in $M, \bar{\gamma}:=f \circ \gamma$ is a geodesic in N.
2. Let $p \in M$. Define $F: T M_{p} \rightarrow T \bar{M}_{f(p)}$ with

$$
F(X):=\left.\frac{d}{d t}\right|_{t=0} f \circ \gamma_{X}(t)
$$

where γ_{X} is the geodesic with $\gamma_{X}(0)=p$ and $\dot{\gamma}(0)=X$. Show that F is surjective and satisfies $F(c X)=c F(X)$ for all $X \in T M_{p}$ and $c \in \mathbb{R}$.
3. Conclude that F is an isometry by proving $\|F(X)\|=\|X\|$.
4. Prove that F is linear and conclude that f is smooth in a neighborhood of p.
5. Prove that f is a diffeomorphism for which $f^{*} \bar{g}=g$ holds.

5.3. Flat manifolds.

Consider the torus $\mathbb{T}^{m}=S^{1} \times \ldots \times S^{1}$ endowed with the product metric coming from m-times the standard metric on S^{1}.

1. Express the metric g in local coordinates.
2. Show that this metric on the torus $\left(\mathbb{T}^{m}, g\right)$ defines a flat manifold (a manifold for which $K(\Pi)=0$ for every plane $\Pi \subset T_{p} M$ and every $\left.p \in M\right)$.
3. Decide whether this statement is true or false: "A smooth Riemannian manifold is flat if and only if the Riemann curvature tensor vanishes identically."

5.4. Curvatures of spheres.

Let $S_{r}^{m} \subset \mathbb{R}^{m+1}$ be the m-dimensional sphere of radius r endowed with the standard metric.

1. Compute the Riemann curvature tensor of S_{r}^{m}.
2. Compute the Ricci curvature tensor of S_{r}^{m}.
3. Compute the scalar curvature of S_{r}^{m}.

5. Solutions

Solution of 5.1:

1. In the following, let e_{1}, e_{2}, e_{3} be an orthonormal basis of $T M_{p}$. First, note that $R_{i i j k}=R_{j k i i}=0$ by the symmetry properties of R.

We denote the components of Ric by $R_{i j}$. Then, for $\{i, j, k\}=\{1,2,3\}$, we have

$$
\begin{aligned}
& R_{i i}=R_{i i i i}+R_{j i j i}+R_{k i k i}=R_{i j i j}+R_{i k i k}, \\
& R_{i j}=R_{i i i j}+R_{j i j j}+R_{k i k j}=R_{i k j k}
\end{aligned}
$$

and therefore, we get

$$
\begin{aligned}
2 R_{i j i j} & =R_{i i}+R_{j j}-R_{k k} \\
R_{i k j k} & =R_{i j}
\end{aligned}
$$

Observe now, that we can compute all other components of R by symmetry properties. Hence R is uniquely determined by Ric.
2. Let e_{1}, e_{2} be a orthonormal basis of $E \subset T M_{p}$ and choose e_{3} such that e_{1}, e_{2}, e_{3} is an orthonormal basis of $T M_{p}$. Then we have

$$
2 \sec _{p}(E)=2 R_{1212}=R_{11}+R_{22}-R_{33}=k+k-k=k
$$

and hence $\sec _{p}(E)=\frac{k}{2}$.

Solution of 5.2:

1. As the property of being a geodesic is local, we may assume that both $\gamma:[0, L] \rightarrow M$ and $f \circ \gamma:[0, L] \rightarrow \bar{M}$ are contained in an open set $U \subset M$ and $\bar{U} \subset \bar{M}$, respectively, such that points in U and \bar{U} are connected by a unique distance minimizing geodesic. Then there is a unique geodesic β from $\bar{\gamma}(0)$ to $\bar{\gamma}(L)$. We claim that $\bar{\gamma}$ and β coincide.

In the following all geodesics are parametrized by arclength. For $t \in[0, L]$ there are geodesics β_{1} from $\bar{\gamma}(0)$ to $\bar{\gamma}(t)$ and β_{2} from $\bar{\gamma}(t)$ to $\bar{\gamma}(L)$. Concatenating β_{1} and β_{2}, we get some piece-wise C^{1}-curve from $\bar{\gamma}(0)$ to $\bar{\gamma}(L)$ with length

$$
\begin{aligned}
L\left(\beta_{1} \beta_{2}\right) & =L\left(\beta_{1}\right)+L\left(\beta_{2}\right) \\
& =\bar{d}(\bar{\gamma}(0), \bar{\gamma}(t))+\bar{d}(\bar{\gamma}(t), \bar{\gamma}(L)) \\
& =d(\gamma(0), \gamma(t))+d(\gamma(t), \gamma(L)) \\
& =d(\gamma(0), \gamma(L))=\bar{d}(\bar{\gamma}(0), \bar{\gamma}(L))=L(\beta)
\end{aligned}
$$

Hence, by uniqueness of the geodesic from $\bar{\gamma}(0)$ to $\bar{\gamma}(L), \beta_{1} \beta_{2}$ and β coincide, i.e. $\bar{\gamma}(t)=\beta(t)$.
2. Observe that f is bijective and its inverse f^{-1} is also is an isometry of metric spaces.

First, we prove that F is surjective. Let $Y \in T \bar{M}_{f(p)}$ and $\bar{\gamma}$ the geodesic through $f(p)$ with $\dot{\bar{\gamma}}(0)=Y$. Then $Y=F(X)$ for $X:=\left.\frac{d}{d t}\right|_{t=0} f^{-1} \circ \bar{\gamma}(t)$.

From $\gamma_{c X}(t)=\gamma_{X}(c t)$ it follows that

$$
F(c X)=\left.\frac{d}{d t}\right|_{t=0} f \circ \gamma_{X}(c t)=c F(X)
$$

3. For $\epsilon>0$ small enough, we have that $\gamma_{X}(\epsilon)$ and $f \circ \gamma_{X}(\epsilon)$ are contained in a normal neighborhood of p and $f(p)$, respectively. Hence we get

$$
\epsilon\|X\|=d\left(p, \gamma_{X}(\epsilon)\right)=\bar{d}\left(f(p), f \circ \gamma_{X}(\epsilon)\right)=\epsilon\|F(X)\|
$$

We now claim that for $X, Y \in T M_{p}$ with $\|X\|=\|Y\|=1$ and α such that $\cos \alpha=g_{p}(X, Y)$ we have

$$
\sin \frac{1}{2} \alpha=\lim _{s \rightarrow 0} \frac{1}{2 s} d\left(\gamma_{X}(s), \gamma_{Y}(s)\right)
$$

and a similar formula for $\bar{X}, \bar{Y} \in T \bar{M}_{f}(p)$ with $\|\bar{X}\|=\|\bar{Y}\|=1$.

Assuming the claim for the moment, we now prove that

$$
g_{p}(X, Y)=\bar{g}_{f(p)}(F(X), F(Y))
$$

for all $X, Y \in T M_{p}$.
Note first that since $F(c X)=c F(X)$, we can assume that $\|X\|=\|Y\|=1$, then also $\|F(X)\|=\|F(Y)\|=1$. So by the claim and the fact that f is a distance preserving map we have for $\cos \alpha=g_{p}(X, Y)$ and $\cos \alpha^{\prime}=\bar{g}_{f(p)}(F(X), F(Y))$

$$
\sin \frac{1}{2} \alpha=\sin \frac{1}{2} \alpha^{\prime} .
$$

Therefore

$$
g_{p}(X, Y)=\cos \alpha=1-2 \sin ^{2} \frac{1}{2} \alpha=1-2 \sin ^{2} \frac{1}{2} \alpha^{\prime}=\bar{g}_{f(p)}(F(X), F(Y)) .
$$

4. For all $X, Y, Z \in T M_{p}$ and $c \in \mathbb{R}$, we have

$$
\begin{aligned}
\bar{g}_{f(p)}(F(X+c Y), F(Z)) & =g_{p}(X+c Y, Z) \\
& =g_{p}(X, Z)+c g_{p}(Y, Z) \\
& =\bar{g}_{f(p)}(F(X), F(Z))+c \bar{g}_{f(p)}(F(Y), F(Z)) \\
& =\bar{g}_{f(p)}(F(X)+c F(Y), F(Z))
\end{aligned}
$$

Hence F is linear and therefore smooth.
If V_{p} is a neighborhood of $0 \in T M_{p}$ such that $\left.\exp _{p}\right|_{V_{p}}: V_{p} \rightarrow U_{p}$ is a diffeomorphism, then we have

$$
\left.f\right|_{U_{p}}=\exp _{f(p)} \circ F \circ\left(\left.\exp _{p}\right|_{V_{p}}\right)^{-1} .
$$

Hence f is smooth as well.
5. The argument above works for all $p \in M$ and also for f^{-1}. Hence f is a diffeomorphism. Furthermore, we have

$$
d f_{p}=d\left(\exp _{f(p)} \circ F \circ \exp _{p}^{-1}\right)=F
$$

and thus

$$
f^{*} \bar{g}_{p}\left(X_{p}, Y_{p}\right)=\bar{g}_{f(p)}\left(d f_{p}\left(X_{p}\right), d f_{p}\left(Y_{p}\right)\right)=\bar{g}_{f(p)}\left(F\left(X_{p}\right), F\left(Y_{p}\right)\right)=g_{p}\left(X_{p}, Y_{p}\right)
$$

for all $X, Y \in T M$.
Proof of the claim (sketch). Let $X, Y \in T M_{p}$ with $\|X\|=\|Y\|=1$ and let $\alpha=$ $\varangle_{0}(X, Y)$, that is, $\cos \alpha=g_{p}(X, Y)$. Consider normal coordinates $(\varphi, B(p, r))$ around p, so that we have $\varphi: B(p, r) \rightarrow B_{r} \subset \mathbb{R}^{n}$ and define $c_{X}:=\varphi \circ \gamma_{X}$ and $c_{Y}:=\varphi \circ \gamma_{Y}$, two curves in B_{r}.

On B_{r} we can consider two different metrics. The Euclidean metric g_{E} and the pull-back metric $h:=\left(\varphi^{-1}\right)^{*} g$.

Note that $h_{0}\left(c_{X}^{\prime}(0), c_{Y}^{\prime}(0)\right)=g_{p}(X, Y)$ and by Lemma $1.19 h_{0}=\left(g_{E}\right)_{0}$, so $\left(g_{E}\right)_{0}\left(c_{X}^{\prime}(0), c_{Y}^{\prime}(0)\right)=$ $g_{p}(X, Y)$. We are now in a completely Euclidean setting.

Suppose by contradiction that $\limsup _{s \rightarrow 0} \frac{1}{2 s} d\left(\gamma_{X}(s), \gamma_{Y}(s)\right)>\sin \frac{1}{2} \alpha$ and take $c>1$ such that

$$
\limsup _{s \rightarrow 0} \frac{1}{2 s} d\left(\gamma_{X}(s), \gamma_{Y}(s)\right)>c \sin \frac{1}{2} \alpha
$$

Now, take r small enough such that $c^{-1} \cdot g_{E}<h<c \cdot g_{E}$ on $B_{r} \subset \mathbb{R}^{n}$, and therefore

$$
c^{-1} \cdot d_{E}<d_{h}<c \cdot d_{E},
$$

where d_{h} denotes the distance function induced by the metric h. This implies that for s small enough

$$
\frac{1}{2 s} d_{E}\left(c_{X}(s), c_{Y}(s)\right)>c \sin \frac{1}{2} \alpha,
$$

which is not true. The other inequality follows similarly.

Solution of 5.3:

1. Denoting by θ_{i} the canonical coordinate on S_{i}^{1}, the metric on \mathbb{T}^{m} can be written as

$$
g=d \theta_{1} \otimes d \theta_{1}+\ldots+d \theta_{m} \otimes d \theta_{m}
$$

2. The metric coefficients $g_{i j}$ in the frame above are constant, therefore by Lemma 3.8 the Christoffel symbols vanish, that is

$$
\Gamma_{j k}^{i}=0 \quad \text { for all } i, j, k
$$

By the formula for the Riemann tensor coefficients in local coordinates (see also remarks after Proposition 3.8) we conclude that $R \equiv 0$.
3. The statement is true. This follows immediately from Lemma 5.8.

Solution of 5.4:

1. By Proposition 5.9. if the sectional curvature is constant, then the Riemann curvature tensor is given by

$$
R(X, Y, Z, W)=k_{0}\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle
$$

By example 5.10 that the image under the exponential map $\exp _{p}$ of a two-plane $\Pi \subset T_{p} M$ is isometric to the two-sphere (of radius r) and the sectional curvature is therefore constant $k_{0}=\frac{1}{r^{2}}$ (independent of the plane chosen) at any point.
2. Ric $=(m-1) g$, see also 5.15.
3. By definition $5.20, \operatorname{scal}_{p}=\frac{m(m-1)}{r^{2}}$.

