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5. Curvature

5.1. Ricci curvature.

Let (M, g) be a 3-dimensional Riemannian manifold. Show the following:
1. The Ricci curvature Ric uniquely determines the Riemannian curvature tensor R.

2. If M is an Einstein manifold, that is, a Riemannian manifold (M, ¢g) with Ric = kg

for some k£ € R, then the sectional curvature sec is constant.

5.2. Metric and Riemannian isometries.

Let (M,g) and (M, g) be two connected Riemannian manifolds with induced distance
functions d and d, respectively. Further, let f: (M,d) — (M,d) be an isometry of metric
spaces, i.e. f is surjective and for all p,p’ € M we have d(f(p), f(¢')) = d(p, 7).

1. Prove that for every geodesic v in M, 7 := f oy is a geodesic in N.

2. Let p € M. Define F: TM, — T M, with

F(X) = o forx(t),
t=0

where vx is the geodesic with vx(0) = p and 4(0) = X. Show that F' is surjective
and satisfies F'(cX) = cF(X) for all X € TM, and c € R.

3. Conclude that F'is an isometry by proving || F(X)|| = || X]|.
4. Prove that F' is linear and conclude that f is smooth in a neighborhood of p.

5. Prove that f is a diffeomorphism for which f*g = g holds.

5.3. Flat manifolds.
Consider the torus T™ = S! x ... x S! endowed with the product metric coming from

m-times the standard metric on S?.
1. Express the metric ¢ in local coordinates.

2. Show that this metric on the torus (T™, g) defines a flat manifold (a manifold for
which K (II) = 0 for every plane II C T, M and every p € M).

3. Decide whether this statement is true or false: "A smooth Riemannian manifold is

flat if and only if the Riemann curvature tensor vanishes identically."
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5.4. Curvatures of spheres.
Let S™ C R™"! be the m-dimensional sphere of radius r endowed with the standard

metric.
1. Compute the Riemann curvature tensor of S;".
2. Compute the Ricci curvature tensor of S)".

3. Compute the scalar curvature of S;".

5. Solutions

Solution of 5.1:

1. In the following, let e;, ez, e3 be an orthonormal basis of T'M,. First, note that

Riiji = Rjkii = 0 by the symmetry properties of R.
We denote the components of Ric by R;;. Then, for {i,j, k} = {1,2, 3}, we have
Rii = Ry + Rjiji + Riivi = Rijij + Rigin,
Rij = Riiij + Rjijj + Ryirj = Rikjk
and therefore, we get
2Rijij = Rii + Rjj — B,

Rigjr = Rij.

Observe now, that we can compute all other components of R by symmetry properties.

Hence R is uniquely determined by Ric.

2. Let eq, ez be a orthonormal basis of £ C T'M,, and choose e3 such that e, ey, e3 is

an orthonormal basis of T'M,,. Then we have

2S€CP<E) = 2R1212 = R11 + R22 - R33 =k + k—k=k

[S1ES

and hence sec,(E) =

Solution of 5.2:
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1. As the property of being a geodesic is local, we may assume that both v: [0, L] — M
and for: [0, L] — M are contained in an open set U C M and U C M, respectively,
such that points in U and U are connected by a unique distance minimizing geodesic.

Then there is a unique geodesic 5 from 7(0) to 7(L). We claim that ¥ and J coincide.

In the following all geodesics are parametrized by arclength. For t € [0, L] there are
geodesics £y from 7(0) to 4(t) and Sy from 7(t) to y(L). Concatenating /31 and [a,
we get some piece-wise Cl-curve from ¥(0) to (L) with length

L(B1B2) = L(B1) + L(B2)

= d(3(0),7%(t)) + d(%(t),7(L))
= d((0),7(t)) + d(~(t),v(L))
= d(7(0),7(L)) = d(3(0),7(L)) = L(B)

Hence, by uniqueness of the geodesic from 74(0) to (L), 5152 and § coincide, i.e.
Y(t) = B(t).

2. Observe that f is bijective and its inverse f~! is also is an isometry of metric spaces.

First, we prove that F is surjective. Let Y € TM f(p) and 7 the geodesic through

f(p) with 4(0) =Y. Then Y = F(X) for X := & — ftoq(t).

From 7.x(t) = vx(ct) it follows that

F(cX) = jt fovyx(ct) =cF(X).

t=0

3. For € > 0 small enough, we have that vx(¢) and f oyx(€) are contained in a normal

neighborhood of p and f(p), respectively. Hence we get

e[ X[l = d(p,vx(€)) = d(f(p), f o vx(€)) = el[F(X)].
We now claim that for X,Y € TM, with | X| = [|Y] = 1 and « such that

cosa = g,(X,Y) we have

o1 .1
sin §oz = £1_I>I(l) %d(vx(s)ﬁY(s))v

and a similar formula for X,Y € TM;(p) with || X| = |V = 1.
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Assuming the claim for the moment, we now prove that

9p(X,Y) = gs (F(X), F(Y)).
for all X,Y € T'M,,.

Note first that since F'(cX) = ¢F(X), we can assume that | X| = ||Y|| = 1, then
also ||F(X)]| = [|[F(Y)|| = 1. So by the claim and the fact that f is a distance
preserving map we have for cosa = g,(X,Y) and cos o’ = gy (F(X), F(Y))

1 1,
sin —a = sin =,
2 2

Therefore

1 1
9p(X,Y) = cosa = 1 — 2sin? S0 = 1 — 2sin? 5@’ = grp)(F(X), F(Y)).

4. For all X,Y,Z € TM, and c € R, we have

Grp)(F(X +¢Y), F(Z))

gp(X + CY7 Z)
= gp(X, Z) + cgp(Y, Z)
= ) (F(X), F(2)) + cgsp)(F(Y), F(Z))
= 9 (F(X) + cF(Y), F(2))

Hence F' is linear and therefore smooth.

If V}, is a neighborhood of 0 € T'M,, such that exp,, |y, : Vj, = U, is a diffeomorphism,

then we have

flo, = eXpy(y oF 0 (exp, ]Vp)*l.
Hence f is smooth as well.

5. The argument above works for all p € M and also for f~!. Hence f is a diffeomor-

phism. Furthermore, we have
dfy = d(expy(, oF o expzjl) =F
and thus

f*gp(Xpa Y;)) = gf(p)(dfp(Xp>7 dfp(yp)) = gf(p)(F(Xp): F(YEO)) = gp(Xpa Y;J),
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forall X, Y € TM.

Proof of the claim (sketch). Let X, Y € TM, with || X]|| = ||Y|| = 1 and let o =
<o(X,Y), that is, cosa = g,(X,Y). Consider normal coordinates (y, B(p,r))
around p, so that we have ¢: B(p,r) — B, C R" and define cx = ¢ o yx and

Cy = @ oy, two curves in B,.

On B, we can consider two different metrics. The Euclidean metric gz and the

pull-back metric h == (p~1)*g.

Note that ho(cx(0), ¢y (0)) = g,(X,Y) and by Lemma 1.19 hy = (9g)o, so (gr)o(cx(0), ¢4 (0)) =
9,(X,Y’). We are now in a completely Euclidean setting.

Suppose by contradiction that limsup,_, 5-d(yx(s), 7v(s)) > sin v and take ¢ > 1
such that

lim sup 5-d(vx(s), 7y (s)) > csin Lo
s—0

Now, take 7 small enough such that ¢! - g < h < ¢- gg on B, C R, and therefore
Cil'dE <dh<C'dE,

where d;, denotes the distance function induced by the metric h. This implies that

for s small enough
dg(cx(s), cy(s csln —«
% E\CX » LY 9 )

which is not true. The other inequality follows similarly. O]

Solution of 5.3:

1. Denoting by 6; the canonical coordinate on S}, the metric on T™ can be written as

2. The metric coefficients g;; in the frame above are constant, therefore by Lemma 3.8

the Christoffel symbols vanish, that is
I, =0 foralli,jk.

By the formula for the Riemann tensor coefficients in local coordinates (see also

remarks after Proposition 3.8) we conclude that R = 0.
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3. The statement is true. This follows immediately from Lemma 5.8.

Solution of 5.4:

1. By Proposition 5.9. if the sectional curvature is constant, then the Riemann curvature

tensor is given by

By example 5.10 that the image under the exponential map exp, of a two-plane
II C T,M is isometric to the two-sphere (of radius r) and the sectional curvature is

therefore constant kg = r% (independent of the plane chosen) at any point.

2. Ric = (m — 1)g, see also 5.15.

3. By definition 5.20, scal, = m(:'fz_l).
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