7. Curvature, conjugate points

7.1. Codazzi equation.

Let $M \subset \bar{M}$ be a submanifold of the Riemannian manifold (\bar{M}, \bar{g}). For the second fundamental form K of M, we define

$$
\left(D_{X}^{\perp} K\right)(Y, W):=\left(\bar{D}_{X}(K(Y, W))^{\perp}-K\left(D_{X} Y, W\right)-K\left(Y, D_{X} W\right)\right.
$$

where $W, X, Y \in \Gamma(T M)$. Show that the Codazzi equation

$$
(\bar{R}(X, Y) W)^{\perp}=\left(D_{X}^{\perp} K\right)(Y, W)-\left(D_{Y}^{\perp} K\right)(X, W)
$$

holds for all $W, X, Y \in \Gamma(T M)$.

7.2. Sectional curvature of submanifolds.

Let (\bar{M}, \bar{g}) be a Riemannian manifold with sectional curvature \bar{K}. Let $p \in \bar{M}$ and $L \subset T \bar{M}_{p}$ an m-dimensional linear subspace.

1. Prove that there is some $r>0$ such that for the open ball $B_{r}(0) \subset T \bar{M}_{p}$, the set $M:=\exp _{p}\left(L \cap B_{r}(0)\right)$ is an m-dimensional submanifold of \bar{M}.
2. Let g be the induced metric on M and let K be the sectional curvature of M. Show that for $E \subset T M_{p}$, we have $K_{p}(E)=\bar{K}_{p}(E)$ and if L is a 2-dimensional subspace, then $K \leq \bar{K}$ on M.

7.3. Small balls and scalar curvature.

Let p be a point in the m-dimensional Riemannian manifold (M, g). The goal is to prove the following Taylor expansion of the volume of the ball $B_{r}(p)$ as a function of r :

$$
\operatorname{vol}\left(B_{r}(p)\right)=\Omega_{m} r^{m}\left(1-\frac{1}{6(m+2)} \operatorname{scal}(p) r^{2}+O\left(r^{3}\right)\right)
$$

1. Let $v \in T M_{p}$ with $|v|=1$, define the geodesic $c(t):=\exp _{p}(t v)$ and let $e_{1}=$ $v, e_{2}, \ldots, e_{m} \in T M_{p}$ be an orthonormal basis. Consider the Jacobi fields Y_{i} along c with $Y_{i}(0)=0$ and $\dot{Y}_{i}(0)=e_{i}$ for $i=2, \ldots m$. Show that the volume distortion factor of $\exp _{p}$ at $t v$ is given by

$$
J(v, t):=\sqrt{\operatorname{det}\left(\left\langle T_{t v} e_{i}, T_{t v} e_{j}\right\rangle\right)}=t^{-(m-1)} \sqrt{\operatorname{det}\left(\left\langle Y_{i}, Y_{j}\right\rangle\right)}
$$

where $T_{t v}:=\left(d \exp _{p}\right)_{t v}$.
2. Let E_{2}, \ldots, E_{m} be parallel vector fields along c with $E_{i}(0)=e_{i}$. Then the Taylor expansion of Y_{i} is

$$
Y_{i}(t)=t E_{i}-\sum_{k=2}^{m}\left(\frac{t^{3}}{6} R\left(e_{i}, v, e_{k}, v\right)+O\left(t^{4}\right)\right) E_{k}
$$

3. Conclude that $J(v, t)=1-\frac{t^{2}}{6} \operatorname{Ric}(v, v)+O\left(t^{4}\right)$.

Hint: Use $\operatorname{det}\left(I_{m}+\epsilon A\right)=1+\epsilon \operatorname{trace}(A)+O\left(\epsilon^{2}\right)$.
4. Prove the above formula for $\operatorname{vol}\left(B_{r}(p)\right)$.

7. Solutions

Solution of 7.1: As $\bar{D}_{Z} W=D_{Z} W+h(Z, W)$ for $W, Z \in \Gamma(T M)$, we get

$$
\begin{aligned}
\bar{R}(X, Y) W= & \bar{D}_{X} \bar{D}_{Y} W-\bar{D}_{Y} \bar{D}_{X} W-\bar{D}_{[X, Y]} W \\
= & \bar{D}_{X}\left(D_{Y} W+h(Y, W)\right)-\bar{D}_{Y}\left(D_{X} W+h(X, W)\right) \\
& -\left(D_{[X, Y]} W+h([X, Y], W)\right) \\
= & D_{X} D_{Y} W+h\left(X, D_{Y} W\right)+\bar{D}_{X}(h(Y, W)) \\
& -D_{Y} D_{X} W-h\left(Y, D_{X} W\right)-\bar{D}_{Y}(h(X, W)) \\
& -D_{[X, Y]} W-h\left(D_{X} Y-D_{Y} X, W\right) \\
= & R(X, Y) W \\
& +\bar{D}_{X}(h(Y, W))-h\left(D_{X} Y, W\right)-h\left(Y, D_{X} W\right) \\
& -\bar{D}_{Y}(h(X, W))+h\left(D_{Y} X, W\right)+h\left(X, D_{Y} W\right) .
\end{aligned}
$$

Note that we used that D is torsion free, i.e. $[X, Y]=D_{X} Y-D_{Y} X$. Now, taking the normal part, we conclude that the Codazzi equation

$$
(\bar{R}(X, Y) W)^{\perp}=\left(D_{X}^{\perp} h\right)(Y, W)-\left(D_{Y}^{\perp} h\right)(X, W)
$$

holds.

Solution of 7.2 :

1. First, we know that there is some $r>0$ such that the restriction of the exponential map to $B_{r}(0)$, i.e. $\left.\exp _{p}\right|_{B_{r}(0)}: B_{r}(0) \rightarrow \exp _{p}\left(B_{r}(0)\right)$, is a diffeomorphism. Furthermore, note that $L \cap B_{r}(0)$ is an m-dimensional submanifold of $B_{r}(0)$ and hence $M=\exp _{p}\left(L \cap B_{r}(0)\right)$ is an m-dimensional submanifold of $\exp _{p}\left(B_{r}(0)\right)$. Finally, as $\exp _{p}\left(B_{r}(0)\right)$ is open in \bar{M}, it follows that M is a submanifold of \bar{M} as well.
2. Let $u, v \in E$ be an orthonormal basis of $E \subset T M_{p}$. Then we have

$$
\begin{aligned}
K_{p}(E) & =R_{p}(u, v, u, v) \\
& =\bar{R}_{p}(u, v, u, v)+\bar{g}_{p}\left(h_{p}(u, u), h_{p}(v, v)\right)-\bar{g}_{p}\left(h_{p}(u, v), h_{p}(u, v)\right) \\
& =\bar{K}_{p}(E)+\bar{g}_{p}\left(h_{p}(u, u), h_{p}(v, v)\right)-\bar{g}_{p}\left(h_{p}(u, v), h_{p}(u, v)\right)
\end{aligned}
$$

We now prove that $h_{p}(u, u)=h_{p}(v, v)=h_{p}(u, v)=0$. Extend u, v to an orthonormal basis $e_{1}=u, e_{2}=v, e_{3}, \ldots, e_{\bar{m}}$ of $T \bar{M}_{p}$. Then this basis induces normal coordinates on \bar{M}. Hence, we have $\Gamma_{i j}^{k}(p)=0$ and thus $\left(\bar{D}_{e_{i}} e_{j}\right)_{p}=0$ for all i, j. In particular this implies that $h_{p}(u, u)=h_{p}(v, v)=h_{p}(u, v)=0$ as claimed.

Assume now that $L \subset T \bar{M}_{p}$ is 2-dimensional and let $q:=\exp _{p}(x) \in M$ for $x \in$ $L \cap B_{r}(0)$. By the above, we may assume that $x \neq 0$.

Define $w:=\frac{x}{|x|} \in T M_{p}$ and let c_{w} be the unique geodesic with $c(0)=p$ and $\dot{c}(0)=w$. Then we have $q=c_{w}(|x|)$ and $u:=\dot{c}_{w}(|x|) \in T M_{q}$ with $|u|=1$. Furthermore, by the Lemma proven in exercise 6.2, we get

$$
h_{q}(u, u)=\left(\left.\frac{\bar{D}}{d t} \dot{c}_{w}\right|_{t=|x|}\right)^{\perp}=0 .
$$

To compute the sectional curvature of $E=T M_{q}$, we extend u to an orthonormal basis u, v of E and get

$$
K_{q}(E)=R_{q}(u, v, u, v)=\bar{R}_{q}(u, v, u, v)-\left|h_{q}(u, v)\right|^{2} \leq \bar{K}_{q}(E)
$$

as desired.

Solution of 7.3:

1. The Jacobi fields Y_{i} are given as variation vector fields along c of $\alpha_{i}(s, t):=\exp _{p}(t) v+$
$\left.s e_{i}\right)$), i.e.

$$
Y_{i}(t)=\left.\frac{d}{d s}\right|_{s=0} \alpha_{i}(s, t)=T_{t v}\left(t e_{i}\right)
$$

and therefore $T_{t v} e_{i}=\frac{1}{t} Y_{i}(t)$.
Furthermore, we have $\left\langle T_{t v} v, T_{t v} e_{i}\right\rangle=\left\langle v, e_{i}\right\rangle=0$ by the Gauss Lemma. Then the volume distortion is given by

$$
J(v, t)=\sqrt{\operatorname{det}\left(\left\langle T_{t v} e_{i}, T_{t v} e_{j}\right\rangle\right)}=t^{-(m-1)} \sqrt{\operatorname{det}\left(\left\langle Y_{i}, Y_{j}\right\rangle\right)}
$$

2. We check that the derivatives coincide. Clearly, we have $Y_{i}(0)=0, \dot{Y}_{i}(0)=e_{i}$ and $\ddot{Y}_{i}(0)=-R\left(Y_{i}(0), \dot{c}(0)\right) \dot{c}(0)=0$. Furthermore,

$$
\begin{aligned}
\dddot{Y}_{i}(0) & =-\left(D_{\dot{c}} R\right)\left(Y_{i}(0), \dot{c}(0)\right) \dot{c}(0)-R\left(\dot{Y}_{i}(0), \dot{c}(0)\right) \dot{c}(0) \\
& =-R\left(e_{i}, v\right) v=-\sum_{k=2}^{m}\left\langle R\left(e_{i}, v\right) v, e_{k}\right\rangle e_{k}=-\sum_{k=2}^{m} R\left(e_{k}, v, e_{i}, v\right) e_{k}
\end{aligned}
$$

3. With the above, we get

$$
\begin{aligned}
& \left\langle Y_{i}, Y_{j}\right\rangle=t^{2}\left\langle E_{i}, E_{j}\right\rangle-\frac{t^{4}}{6} \sum_{k=2}^{m} R\left(e_{i}, v, e_{k}, v\right)\left\langle E_{k}, E_{j}\right\rangle \\
& -\frac{t^{4}}{6} \sum_{k=2}^{m} R\left(e_{j}, v, e_{k}, v\right)\left\langle E_{i}, E_{k}\right\rangle+O\left(t^{5}\right) \\
& =t^{2} \delta_{i j}-\frac{t^{4}}{3} R\left(e_{i}, v, e_{j}, v\right)+O\left(t^{5}\right)
\end{aligned}
$$

and thus

$$
\begin{aligned}
J(v, t) & =\sqrt{\operatorname{det}\left(\delta_{i j}-\frac{t^{2}}{3} R\left(e_{i}, v, e_{j}, v\right)+O\left(t^{3}\right)\right)} \\
& =\sqrt{1-\frac{t^{2}}{3}\left(R\left(e_{i}, v, e_{j}, v\right)\right)+O\left(t^{3}\right)} \\
& =1-\frac{t^{2}}{6}(v, v)+O\left(t^{3}\right)
\end{aligned}
$$

4. First, we use polar coordinates:

$$
\operatorname{vol}\left(B_{r}(p)\right)=\int_{B_{r}(0)} J(v, t)^{1} \ldots^{m}=\int_{0}^{r} \int_{S^{m-1}} t^{m-1} J(v, t)^{S^{m-1}}
$$

Then, using exercise 2 and the above, we get

$$
\begin{aligned}
\operatorname{vol}\left(B_{r}(p)\right) & =\int_{0}^{r} \int_{S^{m-1}} t^{m-1}\left(1-\frac{t^{2}}{6}(v, v)+O\left(t^{3}\right)\right) \operatorname{vol}^{S^{m-1}} \\
& =\int_{0}^{r} t^{m-1}\left(\operatorname{vol}\left(S^{m-1}\right)-\frac{t^{2}}{6} \int_{S^{m-1}}(v, v)^{S^{m-1}}+O\left(t^{3}\right)\right) \\
& =\frac{r^{m}}{m} m \Omega_{m}-\frac{r^{m+2}}{6(m+2)} \operatorname{scal}(p) \Omega_{m}+O\left(r^{m+3}\right) \\
& =\Omega_{m} r^{m}\left(1-\frac{r^{2}}{6(m+2)} \operatorname{scal}(p)+O\left(r^{3}\right)\right)
\end{aligned}
$$

