8. Isometries, translations, geodesics and conjugate points

8.1. Nearby conjugate points.

Prove the following Lemma.
Suppose $\gamma:[0,1] \rightarrow M$ is a geodesic and $t_{0} \in(0,1)$ is such that $\gamma\left(t_{0}\right)$ is conjugate to $\gamma(0)$ along γ. Then there exists $\epsilon>0$ so that the following holds: if $c:[0,1] \rightarrow M$ is a geodesic with $d(\gamma(t), c(t))<\epsilon$ for all $t \in[0,1]$, then there exists $t_{1} \in(0,1)$ so that $c\left(t_{1}\right)$ is conjugate to $c(0)$ along c.

8.2. Locally symmetric spaces.

Let M be a connected m-dimensional Riemannian manifold. Then M is called locally symmetric if for all $p \in M$ there is a normal neighborhood $B(p, r)$ such that the local geodesic reflection $\sigma_{p}:=\exp _{p} \circ(-\mathrm{id}) \circ \exp _{p}^{-1}: B(p, r) \rightarrow B(p, r)$ is an isometry.

1. Show that if M is locally symmetric, then $D R \equiv 0$.

Hint: Use that $d\left(\sigma_{p}\right)_{p}=-\mathrm{id}$ on $T M_{p}$.
2. Suppose that $D R \equiv 0$. Show that if $c:[-1,1] \rightarrow M$ is a geodesic and $\left\{E_{i}\right\}_{i=1}^{m}$ is a parallel orthonormal frame along c, then $R\left(E_{i}, c^{\prime}\right) c^{\prime}=\sum_{k=1}^{m} r_{i}^{k} E_{k}$ for constants r_{i}^{k}.
3. Show that if $D R \equiv 0$, then M is locally symmetric.

Hint: Let $q \in B(p, r), q \neq p$, and $v \in T M_{q}$. To show that $\left|d\left(\sigma_{p}\right)_{q}(v)\right|=|v|$, consider the geodesic $c:[-1,1] \rightarrow B(p, r)$ with $c(0)=p, c(1)=q$, and a Jacobi field Y along c with $Y(0)=0$ and $Y(1)=v$. Use 2 ..

8.3. Poincaré models of hyperbolic space.

Let us introduce the following two well-known models of the hyperbolic space:

$$
\text { Unit ball }\{|z|<1\} \subset \mathbb{R}^{n} \text { equipped with metric } g_{i j}=\frac{4 \delta_{i j}}{\left(1-|z|^{2}\right)^{2}}
$$

and
Half space $\left\{x^{n}>0\right\} \subset \mathbb{R}^{n}$ equipped with metric $g_{i j}=\frac{\delta_{i j}}{\left(x^{n}\right)^{2}}$.

1. Show that composing the transformations $y=x+\left(\frac{1}{2}-2 x^{n}\right) \boldsymbol{e}_{n}$ and $z=\boldsymbol{e}_{n}+(y-$ $\left.\boldsymbol{e}_{n}\right)\left|y-\boldsymbol{e}_{n}\right|^{-2}$ give an isometry between the two previous Riemannian manifolds
2. Show that, for the second model, circular arcs at $\left\{x^{n}=0\right\}$ are geodesics.
3. Show that given any given point all geodesic rays $x(t), t \geq 0$ emanating from it are minimizing up to arbitrarily large values of $t>0$ (note that this is stronger than geodesic completeness).
4. Show that the sectional curvatures are constantly equal to -1 .

8.4. Translations.

Suppose that Γ is a group of translations of \mathbb{R}^{m} that acts freely and properly discontinuously on \mathbb{R}^{m}.

1. Show that there exist linearly independent vectors $v_{1}, \ldots, v_{k} \in \mathbb{R}^{m}$ such that

$$
\Gamma=\left\{x \mapsto x+\sum_{i=1}^{k} z_{i} v_{i}:\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{Z}^{k}\right\} \simeq \mathbb{Z}^{k}
$$

2. Let l denote the infimum of the lengths of all closed curves in \mathbb{R}^{m} / Γ that are not null-homotopic. Show that l equals the length of the shortest non-zero vector of the form $\sum_{i=1}^{k} z_{i} v_{i}$ with $z_{i} \in \mathbb{Z}$ as above.

8. Solutions

Solution of 8.1:Recall that for a (constant speed) geodesic $\gamma:[0,1] \rightarrow M$, there exists $0<t_{*}<1$ such that $\gamma\left(t_{*}\right)$ is conjugate to $\gamma(0)$ along γ if and only if the second variation of length is negative along some variation vector field which vanishes near the endpoints. Indeed, if such a point exists, then the proof of Theorem 6.12 exhibits such a vector field; on the other hand, suppose that there are no conjugate points in $(0,1)$. Then, given a variation vector field X that vanishes for $t \geq 1-2 \delta$, with some $\delta>0$, since there are no conjugate points of γ in the interval $(0,1-\delta]$, by Theorem 6.8γ is locally minimizing there, and in particular the second variation of the proper variation vector field X is nonnegative.

With this observation in hand, the exercise is about making precise that this condition is "open". More precisely, since γ has a conjugate point $\gamma\left(t_{0}\right)$ with $0<t_{0}<1$, there exists a piecewise smooth vector field X along γ, vanishing near 0 and 1 , with negative second variation. Let us consider a small contractible neighborhood U_{1} of $(p, v)=\left(\gamma(0), \gamma^{\prime}(0)\right)$ in $T M$, let $\phi: U_{1} \times[0,1]$ be the geodesic flow on this set (that is, $\phi(q, w, \cdot)$ is the geodesic with initial data (q, w)), and extend X to a piecewise smooth vector field \widetilde{X} along ϕ
vanishing near $U_{1} \times\{0,1\}$ (we can do this by choosing a frame of $T M$ along ϕ and extending componentwise). Since ϕ is piecewise smooth, the function

$$
(q, w) \in U_{1} \mapsto I_{\phi(q, w,)}(\widetilde{X}, \widetilde{X})=\int_{0}^{1}\left|\left(\partial_{t} \widetilde{X}\right)^{\perp}\right|^{2}-R\left(\widetilde{X}, \partial_{t} \phi, \partial_{t} \phi, \widetilde{X}\right) d t
$$

is continuous, and since it is negative at (p, v) it must also be negative in a neighborhood U of (p, v).

Finally we need to show that for this neighborhood $U \subset T M$ of the initial data $(p, v) \in T M$ there exists $\epsilon>0$ such that, if a geodesic $c:[0,1] \rightarrow M$ satisfies $d(\gamma(t), c(t))<\epsilon$ for all $t \in[0,1]$, then the initial data $\left(c(0), c^{\prime}(0)\right)$ lies in U. We do this by contradiction: suppose that no such ϵ exists, thus we can find a sequence of geodesics $c_{j}:[0,1] \rightarrow M$ such that $d\left(\gamma(t), c_{j}(t)\right)<j^{-1}$ but $\left(c_{j}(0), c_{j}^{\prime}(0)\right) \notin U$.

First we need to show that the lengths of the curves are controlled. For that, let $a>0$ be small enough so that every geodesic contained in $B_{a}(p)$ is length-minimizing. Then let $t=\frac{a}{2|v|}$ and choose $j>\frac{2}{a}$, so that $\gamma([0, t])$ is contained in $\bar{B}_{a / 2}(p)$ and thus $c_{j}([0, t])$ is contained in $B_{a}(p)$. Then

$$
\begin{aligned}
t\left|c_{j}^{\prime}(0)\right| & =L\left(c_{j}([0, t])\right)=d\left(c_{j}(0), c_{j}(t)\right) \\
& \leq d\left(c_{j}(0), \gamma(0)\right)+d(\gamma(0), \gamma(t))+d\left(\gamma(t), c_{j}(t)\right) \\
& \leq \frac{2}{j}+t|v|
\end{aligned}
$$

hence $\left|c_{j}^{\prime}(0)\right| \leq|v|+\frac{4|v|}{j a}$ is bounded independently of j. Note also that $d(c(0), p) \leq j^{-1}$, so $c_{j}(0) \rightarrow p$. Hence, after taking a subsequence, $\left(c_{j}(0), c_{j}^{\prime}(0)\right) \rightarrow(p, w)$ for some $w \in T_{p} M$. If $\widetilde{\gamma}$ denotes the geodesic with $\widetilde{\gamma}(0)=p$ and $\widetilde{\gamma}^{\prime}(0)=w$, then by the theorem of smooth dependence on initial data for ODEs, we have that $c_{j} \rightarrow \widetilde{\gamma}$ uniformly. But also $c_{j} \rightarrow \gamma$ uniformly, hence $\gamma=\widetilde{\gamma}$, which implies that $(p, v)=(p, w)=\lim _{j \rightarrow \infty}\left(c_{j}(0), c_{j}^{\prime}(0)\right)$ and thus $\left(c_{j}(0), c_{j}^{\prime}(0)\right) \in U$ for j large enough.

Solution of 8.2: (a) Suppose that M is locally symmetric, let $p \in M$ and $w, x, y, z \in T M_{p}$.

Then, since σ_{p} is an isometry and $d\left(\sigma_{p}\right)_{p}=-\mathrm{id}$ on $T M_{p}$ we have

$$
\begin{aligned}
-\left(D_{w} R\right)(x, y) z & =d\left(\sigma_{p}\right)_{p}\left(D_{w} R\right)(x, y) z \\
& =\left(D_{d\left(\sigma_{p}\right)_{p} w}\right)\left(d\left(\sigma_{p}\right)_{p} x, d\left(\sigma_{p}\right)_{p} y\right) d\left(\sigma_{p}\right)_{p} z \\
& =\left(D_{-w} R\right)(-x,-y)-z \\
& =\left(D_{w} R\right)(x, y) z,
\end{aligned}
$$

so $\left(D_{w} R\right)(x, y) z=0$.
b) Recall that for $X, Y, Z, W \in \Gamma(T M)$

$$
\begin{aligned}
D_{W}(R(X, Y) Z)= & R(X, Y) D_{W}(Z)+R\left(D_{W} X, Y\right) \\
& +R\left(X, D_{W} Y\right) Z+\left(D_{W} R\right)(X, Y) Z .
\end{aligned}
$$

Now, write $R\left(E_{i}, c^{\prime}\right) c^{\prime}=\sum_{k=1}^{m} f_{i}^{k} E_{k}$ for some functions $f_{i}^{k}:[-1,1] \rightarrow \mathbb{R}$. Since E_{i} and c^{\prime} are parallel vector fields, the above relation implies that

$$
\begin{aligned}
0 & =\left(D_{\partial / \partial t} R\right)\left(E_{i}, c^{\prime}\right) c^{\prime} \\
& =D_{\partial / \partial t}\left(R\left(E_{i}, c^{\prime}\right) c^{\prime}\right) \\
& =\sum_{k=1}^{m} D_{\partial / \partial t}\left(f_{i}^{k} E_{k}\right) \\
& =\sum_{k=1}^{m}\left(\dot{f}_{i}^{k} E_{k}+f_{i}^{k} D_{\partial / \partial t} E_{k}\right) \\
& =\sum_{k=1}^{m} \dot{f}_{i}^{k} E_{k},
\end{aligned}
$$

hence the f_{i}^{k} are constant.
c) Let $q \in B(p, r), q \neq p$ and $v \in T M_{q}$. We must show that $\left|d\left(\sigma_{p}\right)_{q}(v)\right|=|v|$. Let $c:[-1,1] \rightarrow M$ be the geodesic with $c(0)=p$ and $c(1)=q$. Let Y be the Jacobi field along c with $Y(0)=0$ and $Y(1)=v$. Since σ_{p} reverts geodesics it follows that $d\left(\sigma_{p}\right)_{q} Y(1)=Y(-1)$, so it remains to show that $|Y(1)|=|Y(-1)|$. Write $Y=\sum_{i=1}^{m} h^{i} E_{i}$ for some functions $h^{i}:[-1,1] \rightarrow \mathbb{R}$ then the Jacobi equation implies that

$$
\ddot{h}^{k}+\sum_{i=1}^{m} h^{i} r_{i}^{k}=0
$$

with $h^{i}(0)=0$, for $k=1, \ldots, m$. It follows that $h^{i}(-t)=-h^{i}(t)$ for all $t \in[-1,1]$. In particular $|Y(-1)|=|Y(1)|$.

Solution of 8.3: a) We have

$$
\begin{gathered}
d z=\left(y-\boldsymbol{e}_{n}\right)\left|y-\boldsymbol{e}_{n}\right|^{-2} d y-2\left|y-\boldsymbol{e}_{n}\right|^{-4}\left(y-\boldsymbol{e}_{n}\right) \cdot d y\left(y-\boldsymbol{e}_{n}\right) \\
|d z|^{2}=\left|y-\boldsymbol{e}_{n}\right|^{-4}|d y|^{2} \\
1-|z|^{2}=\left(1-2 y^{n}\right)\left|y-\boldsymbol{e}_{n}\right|^{-2}
\end{gathered}
$$

Hence, using $|d y|=|d x|$ and $2 y^{n}-1=-2 x^{n}$ we obtain

$$
\frac{4|d z|^{2}}{\left(1-|z|^{2}\right)^{2}}=\frac{4|d y|^{2}}{\left(1-2 y^{n}\right)^{2}}=\frac{|d x|^{2}}{\left(x^{n}\right)^{2}}
$$

b) In order to compute the geodesic equation we let $x(t):=x(t)+\xi(t)$, where both x, ξ are function from (a, b) to $\left\{x^{n}>0\right\}, \xi$ vanishing at a and b. We have

$$
0=\left.\frac{d}{d}\right|_{=0} L(x)=\left.\frac{d}{d}\right|_{=0} \int_{a}^{b} \frac{\left|x^{\prime}+\xi^{\prime}\right|}{\left(x^{n}+\xi^{n}\right)} d t=\int_{a}^{b} \frac{x^{\prime} \cdot \xi^{\prime}}{\left|x^{\prime}\right|\left(x^{n}\right)}-\frac{\left|x^{\prime}\right|}{\left(x^{n}\right)^{2}} \xi^{n} d t
$$

After integrating by parts and using that ξ is arbitrary we find

$$
-\left(\frac{x^{\prime}}{\left|x^{\prime}\right|\left(x^{n}\right)}\right)^{\prime}-\frac{\left|x^{\prime}\right|}{\left(x^{n}\right)^{2}} \boldsymbol{e}_{n}=0
$$

Also, $x(t)$ is parametrized by the arc length iff $\frac{\left|x^{\prime}(t)\right|^{2}}{\left(x^{n}(t)\right)^{2}}=1$.
Hence, we obtain

$$
\left(\frac{\left(x^{\alpha}\right)^{\prime}}{\left(x^{n}\right)^{2}}\right)^{\prime}=0 \quad \text { for } \alpha=1,2, \ldots, n-1 \quad\left(\frac{\left(x^{n}\right)^{\prime}}{\left(x^{n}\right)^{2}}\right)^{\prime}+\frac{1}{x^{n}}=0
$$

Take now $x(t)=R \cos \theta(t) \boldsymbol{e}_{1}+R \sin \theta(t) \boldsymbol{e}_{n}$, for some $R>0$, with $\theta(t)$ satisfying $\theta^{\prime}=\sin \theta$.
We have:

$$
\left(\frac{\left(x^{1}\right)^{\prime}}{\left(x^{n}\right)^{2}}\right)^{\prime}=\left(\frac{-\sin \theta \theta^{\prime}}{R \sin ^{2} \theta}\right)^{\prime}+\frac{1}{R \sin \theta}=(-1 / R)^{\prime}=0
$$

and

$$
\begin{aligned}
\left(\frac{\left(x^{n}\right)^{\prime}}{\left(x^{n}\right)^{2}}\right)^{\prime}+\frac{1}{x^{n}} & =\left(\frac{\cos \theta \theta^{\prime}}{R \sin ^{2} \theta}\right)^{\prime}+\frac{1}{R \sin \theta} \\
& =\frac{(\operatorname{cotan} \theta)^{\prime}}{R}+\frac{1}{R \sin \theta}=\frac{-\theta^{\prime}}{R \sin ^{2} \theta}+\frac{1}{R \sin \theta}=0
\end{aligned}
$$

Hence (using that the metric is invariant under translations and rotation in the first $n-1$ variables, we have shown that half circular arcs with centers on $\left\{x^{n}=0\right\}$ are geodesics. Since for any point $p \in\left\{x^{n}>0\right\}$ and for any unit vector $v \in \mathbb{S}^{n-1}$ there is a (unique) half circular arc with center on $\left\{x^{n}=0\right\}$ through p and tangent to v, these are all geodesics.
c) The geodesic completeness follows from the fact that $\theta(t)$ above (satisfying $\theta^{\prime}=\sin \theta$) is the arc length and $\int_{a}^{b} \frac{d \theta}{\sin \theta} \rightarrow+\infty$ if $a \downarrow 0$ or $b \uparrow \pi$. Also, since given any two points in $\left\{x^{n}>0\right\}$ there is a unique half circular arc with center on $\left\{x^{n}=0\right\}$ through them, this must be the minimizing geodesic joining them. As a consequence, any geodesic joining any two points is minimizing.
d) By Koszul's formula, for $\alpha, \beta=1,2, \ldots, n-1$ we have

$$
\nabla_{\partial_{\alpha}} \partial_{\beta}=\left(x^{n}\right)^{-1} \delta_{\alpha \beta} \partial_{n}, \quad \nabla_{\partial_{n}} \partial_{\alpha}=\left(x^{n}\right)^{-1} \partial_{\alpha}, \quad \nabla_{\partial_{n}} \partial_{n}=\left(x^{n}\right)^{-1} \partial_{n}
$$

Hence,

$$
\nabla_{\partial_{\beta}} \nabla_{\partial_{\alpha}} \partial_{\beta}=-\left(x^{n}\right)^{2} \delta_{\alpha \beta} \partial_{\beta}, \quad \nabla_{\partial_{\alpha}} \nabla_{\partial_{\beta}} \partial_{\beta}=-\left(x^{n}\right)^{-2} \partial_{\alpha}
$$

This implies

$$
R\left(\partial_{\beta}, \partial_{\alpha}\right) \partial_{\beta}=-\left(x^{n}\right)^{2} \partial_{\alpha}
$$

Similarly,

$$
R\left(\partial_{n}, \partial_{\alpha}\right) \partial_{n}=-\left(x^{n}\right)^{2} \partial_{\alpha}
$$

This implies that the sectional curvatures are constantly equal to -1 .

Solution of 8.4: a) For each $g \in \Gamma$ there is some $v_{g} \in \mathbb{R}^{m}$ such that $g x=x+v_{g}$ for all $x \in \mathbb{R}^{m}$ and since Γ acts freely, we have $v_{g} \neq 0$ for $g \neq \mathrm{id}$. We denote $V:=\left\{v_{g} \in \mathbb{R}^{m}\right.$: $g \in \Gamma\}$. Note that, as Γ acts properly discontinuously, $V \cap B_{r}(0)$ is finite for all $r>0$ and thus each subset of V has an element of minimal length.

We now do induction on m. For $m=1$, choose $g \in \Gamma \backslash\{\mathrm{id}\}$ such that $\left|v_{g}\right|$ is of minimal length. If there is some $v \in V$ with $v=\lambda v_{g}, \lambda \notin \mathbb{Z}$, we also have $w:=v-\lfloor\lambda\rfloor v_{g} \in V \backslash\{0\}$ with $|w|<\left|v_{g}\right|$, a contradiction to minimality.

For $m \geq 2$, let $v_{g} \in V \backslash\{0\}$ be of minimal length and let $V^{\prime}:=\operatorname{span}\left(v_{g}\right) \cap V$. By the same argument as above, we get $V^{\prime}=\mathbb{Z} v_{g}$.

Then we have $\mathbb{R}^{m}=\mathbb{R}^{m-1} \oplus \mathbb{R} v_{g}$ with projection map $\pi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m-1}$ and $\Gamma^{\prime}:=\Gamma / g \mathbb{Z}$ acts by translations on \mathbb{R}^{m-1} via $[h] x=x+\pi\left(v_{h}\right)$. As for $h \notin g \mathbb{Z}$ we have $\pi\left(v_{h}\right) \neq 0$, this action is free. We claim that it is properly discontinuous as well. If not, there are $\left(h_{n}\right)_{n \in \mathbb{N}} \in \Gamma$ with $\pi\left(v_{h_{n}}\right) \neq \pi\left(v_{h_{n^{\prime}}}\right)$ and $\left|\pi\left(v_{h_{n}}\right)\right|<r$ for some $r>0$. But then, there are $l_{n} \in \mathbb{Z}$ such that $\left|v_{h_{n}}-\pi\left(v_{h_{n}}\right)-l_{n} v_{g}\right|<\left|v_{g}\right|$, i.e. $\left(v_{h_{n}-l_{n} g}\right)_{n \in N}$ is an infinite subset of $V \cap B_{r+\left|v_{g}\right|}(0)$, contradicting that Γ acts properly discontinuously.

By our induction hypothesis, there are $h_{2}, \ldots, h_{k} \in \Gamma$ such that

$$
\pi(V)=\mathbb{Z} \pi\left(v_{h_{2}}\right) \oplus \ldots \oplus \mathbb{Z} \pi\left(v_{h_{k}}\right)
$$

and consequently $V=\mathbb{Z} v_{g} \oplus \mathbb{Z} v_{h_{2}} \oplus \ldots \oplus \mathbb{Z} v_{h_{k}}$.
b) Let $\pi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m} / \Gamma$ denote the covering map and let $c:[0,1] \rightarrow \mathbb{R}^{m} / \Gamma$ be a closed curve in \mathbb{R}^{m} / Γ. Then for $p \in \pi^{-1}(c(0))$, there exists a unique lift $\bar{c}:[0,1] \rightarrow \mathbb{R}^{m}$ of c with $\bar{c}(0)=p$. Furthermore, if c is not null-homotopic, we have $q:=\bar{c}(1) \neq \bar{c}(0)$ and therefore

$$
L(c)=L(\bar{c}) \geq d(p, q)=\left|\sum_{i=1}^{k} z_{i} v_{i}\right|
$$

for some $\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{Z}^{k} \backslash\{0\}$.
Finally, if $v=\sum_{i=1}^{k} z_{i} v_{i} \neq 0$ is of minimal length, then $c:[0,1] \rightarrow \mathbb{R}^{m} / \Gamma, c(t):=\pi(t v)$, has length $L(c)=|v|$.

