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8. Isometries, translations, geodesics and conjugate points

8.1. Nearby conjugate points.
Prove the following Lemma.
Suppose γ : [0, 1] → M is a geodesic and t0 ∈ (0, 1) is such that γ(t0) is conjugate to γ(0)
along γ. Then there exists ϵ > 0 so that the following holds: if c : [0, 1] → M is a geodesic
with d(γ(t), c(t)) < ϵ for all t ∈ [0, 1], then there exists t1 ∈ (0, 1) so that c(t1) is conjugate
to c(0) along c.

8.2. Locally symmetric spaces.
Let M be a connected m-dimensional Riemannian manifold. Then M is called locally
symmetric if for all p ∈ M there is a normal neighborhood B(p, r) such that the local
geodesic reflection σp := expp ◦(− id) ◦ exp−1

p : B(p, r) → B(p, r) is an isometry.

1. Show that if M is locally symmetric, then DR ≡ 0.
Hint: Use that d(σp)p = − id on TMp.

2. Suppose that DR ≡ 0. Show that if c : [−1, 1] → M is a geodesic and {Ei}m
i=1 is a

parallel orthonormal frame along c, then R(Ei, c′)c′ = ∑m
k=1 rk

i Ek for constants rk
i .

3. Show that if DR ≡ 0, then M is locally symmetric.
Hint: Let q ∈ B(p, r), q ̸= p, and v ∈ TMq. To show that |d(σp)q(v)| = |v|, consider
the geodesic c : [−1, 1] → B(p, r) with c(0) = p, c(1) = q, and a Jacobi field Y along
c with Y (0) = 0 and Y (1) = v. Use 2..

8.3. Poincaré models of hyperbolic space.
Let us introduce the following two well-known models of the hyperbolic space:

Unit ball {|z| < 1} ⊂ Rn equipped with metric gij = 4δij

(1 − |z|2)2

and
Half space {xn > 0} ⊂ Rn equipped with metric gij = δij

(xn)2 .

1. Show that composing the transformations y = x + (1
2 − 2xn)en and z = en + (y −

en)|y − en|−2 give an isometry between the two previous Riemannian manifolds

2. Show that, for the second model, circular arcs at {xn = 0} are geodesics.
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3. Show that given any given point all geodesic rays x(t), t ≥ 0 emanating from it are
minimizing up to arbitrarily large values of t > 0 (note that this is stronger than
geodesic completeness).

4. Show that the sectional curvatures are constantly equal to −1.

8.4. Translations.
Suppose that Γ is a group of translations of Rm that acts freely and properly discontinuously
on Rm.

1. Show that there exist linearly independent vectors v1, . . . , vk ∈ Rm such that

Γ =
{

x 7→ x +
k∑

i=1
zivi : (z1, . . . , zk) ∈ Zk

}
≃ Zk.

2. Let l denote the infimum of the lengths of all closed curves in Rm/Γ that are not
null-homotopic. Show that l equals the length of the shortest non-zero vector of the
form ∑k

i=1 zivi with zi ∈ Z as above.

8. Solutions

Solution of 8.1:Recall that for a (constant speed) geodesic γ : [0, 1] → M , there exists
0 < t∗ < 1 such that γ(t∗) is conjugate to γ(0) along γ if and only if the second variation
of length is negative along some variation vector field which vanishes near the endpoints.
Indeed, if such a point exists, then the proof of Theorem 6.12 exhibits such a vector field;
on the other hand, suppose that there are no conjugate points in (0, 1). Then, given a
variation vector field X that vanishes for t ≥ 1 − 2δ, with some δ > 0, since there are no
conjugate points of γ in the interval (0, 1 − δ], by Theorem 6.8 γ is locally minimizing
there, and in particular the second variation of the proper variation vector field X is
nonnegative.

With this observation in hand, the exercise is about making precise that this condition is
“open”. More precisely, since γ has a conjugate point γ(t0) with 0 < t0 < 1, there exists a
piecewise smooth vector field X along γ, vanishing near 0 and 1, with negative second
variation. Let us consider a small contractible neighborhood U1 of (p, v) = (γ(0), γ′(0)) in
TM , let ϕ : U1 × [0, 1] be the geodesic flow on this set (that is, ϕ(q, w, ·) is the geodesic
with initial data (q, w)), and extend X to a piecewise smooth vector field X̃ along ϕ
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vanishing near U1 × {0, 1} (we can do this by choosing a frame of TM along ϕ and
extending componentwise). Since ϕ is piecewise smooth, the function

(q, w) ∈ U1 7→ Iϕ(q,w,·)(X̃, X̃) =
ˆ 1

0
|(∂tX̃)⊥|2 − R(X̃, ∂tϕ, ∂tϕ, X̃) dt

is continuous, and since it is negative at (p, v) it must also be negative in a neighborhood
U of (p, v).

Finally we need to show that for this neighborhood U ⊂ TM of the initial data (p, v) ∈ TM

there exists ϵ > 0 such that, if a geodesic c : [0, 1] → M satisfies d(γ(t), c(t)) < ϵ for all
t ∈ [0, 1], then the initial data (c(0), c′(0)) lies in U . We do this by contradiction: suppose
that no such ϵ exists, thus we can find a sequence of geodesics cj : [0, 1] → M such that
d(γ(t), cj(t)) < j−1 but (cj(0), c′

j(0)) /∈ U .

First we need to show that the lengths of the curves are controlled. For that, let a > 0
be small enough so that every geodesic contained in Ba(p) is length-minimizing. Then
let t = a

2|v| and choose j > 2
a
, so that γ([0, t]) is contained in Ba/2(p) and thus cj([0, t]) is

contained in Ba(p). Then

t|c′
j(0)| = L(cj([0, t])) = d(cj(0), cj(t))

≤ d(cj(0), γ(0)) + d(γ(0), γ(t)) + d(γ(t), cj(t))

≤ 2
j

+ t|v|,

hence |c′
j(0)| ≤ |v| + 4|v|

ja
is bounded independently of j. Note also that d(c(0), p) ≤ j−1, so

cj(0) → p. Hence, after taking a subsequence, (cj(0), c′
j(0)) → (p, w) for some w ∈ TpM .

If γ̃ denotes the geodesic with γ̃(0) = p and γ̃′(0) = w, then by the theorem of smooth
dependence on initial data for ODEs, we have that cj → γ̃ uniformly. But also cj → γ

uniformly, hence γ = γ̃, which implies that (p, v) = (p, w) = limj→∞(cj(0), c′
j(0)) and thus

(cj(0), c′
j(0)) ∈ U for j large enough.

Solution of 8.2: (a) Suppose that M is locally symmetric, let p ∈ M and w, x, y, z ∈ TMp.
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Then, since σp is an isometry and d(σp)p = − id on TMp we have

−(DwR)(x, y)z = d(σp)p(DwR)(x, y)z

= (Dd(σp)pw)(d(σp)px, d(σp)py)d(σp)pz

= (D−wR)(−x, −y) − z

= (DwR)(x, y)z,

so (DwR)(x, y)z = 0.

b) Recall that for X, Y, Z, W ∈ Γ(TM)

DW (R(X, Y )Z) =R(X, Y )DW (Z) + R(DW X, Y )

+ R(X, DW Y )Z + (DW R)(X, Y )Z.

Now, write R(Ei, c′)c′ = ∑m
k=1 fk

i Ek for some functions fk
i : [−1, 1] → R. Since Ei and c′

are parallel vector fields, the above relation implies that

0 = (D∂/∂tR)(Ei, c′)c′

= D∂/∂t

(
R(Ei, c′)c′

)
=

m∑
k=1

D∂/∂t(fk
i Ek)

=
m∑

k=1

(
f
. k

i Ek + fk
i D∂/∂tEk

)
=

m∑
k=1

f
. k

i Ek,

hence the fk
i are constant.

c) Let q ∈ B(p, r), q ̸= p and v ∈ TMq. We must show that |d(σp)q(v)| = |v|. Let
c : [−1, 1] → M be the geodesic with c(0) = p and c(1) = q. Let Y be the Jacobi
field along c with Y (0) = 0 and Y (1) = v. Since σp reverts geodesics it follows that
d(σp)qY (1) = Y (−1), so it remains to show that |Y (1)| = |Y (−1)|. Write Y = ∑m

i=1 hiEi

for some functions hi : [−1, 1] → R then the Jacobi equation implies that

h
..k +

m∑
i=1

hirk
i = 0,

with hi(0) = 0, for k = 1, . . . , m. It follows that hi(−t) = −hi(t) for all t ∈ [−1, 1]. In
particular |Y (−1)| = |Y (1)|.
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Solution of 8.3: a) We have

dz = (y − en)|y − en|−2dy − 2|y − en|−4(y − en) · dy(y − en),

|dz|2 = |y − en|−4|dy|2

1 − |z|2 = (1 − 2yn)|y − en|−2

Hence, using |dy| = |dx| and 2yn − 1 = −2xn we obtain

4|dz|2

(1 − |z|2)2 = 4|dy|2

(1 − 2yn)2 = |dx|2

(xn)2

b) In order to compute the geodesic equation we let x(t) := x(t) + ξ(t), where both x, ξ

are function from (a, b) to {xn > 0}, ξ vanishing at a and b. We have

0 = d
d

∣∣∣
=0

L(x) = d
d

∣∣∣
=0

ˆ b

a

|x′ + ξ′|
(xn + ξn)dt =

ˆ b

a

x′ · ξ′

|x′|(xn) − |x′|
(xn)2 ξndt.

After integrating by parts and using that ξ is arbitrary we find

−
(

x′

|x′|(xn)

)′

− |x′|
(xn)2 en = 0.

Also, x(t) is parametrized by the arc length iff |x′(t)|2
(xn(t))2 = 1.

Hence, we obtain
(

(xα)′

(xn)2

)′

= 0 for α = 1, 2, . . . , n − 1
(

(xn)′

(xn)2

)′

+ 1
xn

= 0

Take now x(t) = R cos θ(t)e1 + R sin θ(t)en, for some R > 0, with θ(t) satisfying θ′ = sin θ.

We have: (
(x1)′

(xn)2

)′

=
(

− sin θθ′

R sin2 θ

)′

+ 1
R sin θ

=
(

− 1/R
)′

= 0

and (
(xn)′

(xn)2

)′

+ 1
xn

=
(

cos θθ′

R sin2 θ

)′

+ 1
R sin θ

= (cotan θ)′

R
+ 1

R sin θ
= −θ′

R sin2 θ
+ 1

R sin θ
= 0.
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Hence (using that the metric is invariant under translations and rotation in the first n − 1
variables, we have shown that half circular arcs with centers on {xn = 0} are geodesics.
Since for any point p ∈ {xn > 0} and for any unit vector v ∈ Sn−1 there is a (unique) half
circular arc with center on {xn = 0} through p and tangent to v, these are all geodesics.

c) The geodesic completeness follows from the fact that θ(t) above (satisfying θ′ = sin θ)
is the arc length and

´ b

a
dθ

sin θ
→ +∞ if a ↓ 0 or b ↑ π. Also, since given any two points

in{xn > 0} there is a unique half circular arc with center on {xn = 0} through them, this
must be the minimizing geodesic joining them. As a consequence, any geodesic joining
any two points is minimizing.

d) By Koszul’s formula, for α, β = 1, 2, . . . , n − 1 we have

∇∂α∂β = (xn)−1δαβ∂n, ∇∂n∂α = (xn)−1∂α, ∇∂n∂n = (xn)−1∂n

Hence,
∇∂β

∇∂α∂β = −(xn)2δαβ∂β, ∇∂α∇∂β
∂β = −(xn)−2∂α.

This implies
R(∂β, ∂α)∂β = −(xn)2∂α.

Similarly,
R(∂n, ∂α)∂n = −(xn)2∂α.

This implies that the sectional curvatures are constantly equal to −1.

Solution of 8.4: a) For each g ∈ Γ there is some vg ∈ Rm such that gx = x + vg for all
x ∈ Rm and since Γ acts freely, we have vg ̸= 0 for g ̸= id. We denote V := {vg ∈ Rm :
g ∈ Γ}. Note that, as Γ acts properly discontinuously, V ∩ Br(0) is finite for all r > 0 and
thus each subset of V has an element of minimal length.

We now do induction on m. For m = 1, choose g ∈ Γ \ {id} such that |vg| is of minimal
length. If there is some v ∈ V with v = λvg, λ /∈ Z, we also have w := v − ⌊λ⌋vg ∈ V \ {0}
with |w| < |vg|, a contradiction to minimality.

For m ≥ 2, let vg ∈ V \ {0} be of minimal length and let V ′ := span(vg) ∩ V . By the
same argument as above, we get V ′ = Zvg.
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Then we have Rm = Rm−1 ⊕ Rvg with projection map π : Rm → Rm−1 and Γ′ := Γ/gZ
acts by translations on Rm−1 via [h]x = x + π(vh). As for h /∈ gZ we have π(vh) ̸= 0,
this action is free. We claim that it is properly discontinuous as well. If not, there are
(hn)n∈N ∈ Γ with π(vhn) ̸= π(vhn′ ) and |π(vhn)| < r for some r > 0. But then, there are
ln ∈ Z such that |vhn − π(vhn) − lnvg| < |vg|, i.e. (vhn−lng)n∈N is an infinite subset of
V ∩ Br+|vg |(0), contradicting that Γ acts properly discontinuously.

By our induction hypothesis, there are h2, . . . , hk ∈ Γ such that

π(V ) = Zπ(vh2) ⊕ . . . ⊕ Zπ(vhk
)

and consequently V = Zvg ⊕ Zvh2 ⊕ . . . ⊕ Zvhk
.

b) Let π : Rm → Rm/Γ denote the covering map and let c : [0, 1] → Rm/Γ be a closed
curve in Rm/Γ. Then for p ∈ π−1(c(0)), there exists a unique lift c : [0, 1] → Rm of c with
c(0) = p. Furthermore, if c is not null-homotopic, we have q := c(1) ̸= c(0) and therefore

L(c) = L(c) ≥ d(p, q) =
∣∣∣∣∣

k∑
i=1

zivi

∣∣∣∣∣ ,
for some (z1, . . . , zk) ∈ Zk \ {0}.

Finally, if v = ∑k
i=1 zivi ≠ 0 is of minimal length, then c : [0, 1] → Rm/Γ, c(t) := π(tv),

has length L(c) = |v|.
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