Introduction to Mathematical Finance Exercise sheet 1

Please submit your solutions online until Wednesday 22:00, 28/02/2024.

Exercise 1.1 Let $\mathcal{C} := \mathbb{R} \times \mathbb{R}^K$ be the consumption space, \mathcal{D} the payoff matrix, e^i an endowment and π a price vector. Recall the budget set

 $B(e^{i},\pi) := \{ c \in \mathcal{C} : \exists \vartheta \in \mathbb{R}^{N} \text{ with } c_{0} \leq e_{0}^{i} - \vartheta \cdot \pi \text{ and } c_{T} \leq e_{T}^{i} + \mathcal{D}\vartheta \}.$

(a) For the statements

1. $c \in B(e^i, \pi)$,

2.
$$c - e^i \in B(0, \pi),$$

3. $c - e^i$ is attainable from 0 initial wealth endowment,

show that $(1) \Leftrightarrow (2) \Leftarrow (3)$.

(b) Show by an example that $(2) \Rightarrow (3)$ is not true in general.

Exercise 1.2 Let \succeq be a preference order on C satisfying axioms (P1)-(P5). A function $\mathcal{U} : C \to \mathbb{R}$ is called a *utility functional representing* \succeq or a numerical representation of \succeq if

$$c' \succeq c \iff \mathcal{U}(c') \ge \mathcal{U}(c).$$

(a) Show that all \mathcal{U} representing \succeq must be *quasiconcave*, i.e., for all $c, c' \in \mathcal{C}$ and $\lambda \in [0, 1]$,

 $\mathcal{U}(\lambda c + (1 - \lambda)c') \ge \min{\{\mathcal{U}(c), \mathcal{U}(c')\}}.$

- (b) Which axioms are needed for this result?
- (c) Show by a counterexample that a preference order can be represented by a utility functional which is not concave.

Exercise 1.3

- (a) Construct a market with arbitrage of the first kind but with no arbitrage of the second kind.
- (b) Construct a market with arbitrage of the second kind but with no arbitrage of the first kind.
- (c) Find a sufficient condition under which existence of an arbitrage of the second kind implies the existence of an arbitrage of the first kind.