Introduction to Mathematical Finance Exercise sheet 10

Please submit your solutions online until Wednesday 10pm, 08/05/2024.

Exercise 10.1

(a) Let (ϑ, c) be a self-financing investment and consumption pair and

$$
W_{t}=W_{t}^{v_{0}, \vartheta, c}=v_{0}+\sum_{j=1}^{t}\left(\vartheta_{j} \cdot \triangle X_{j}-c_{j-1}\right)
$$

for $t=0,1, \ldots, T$ the corresponding discounted wealth process. Show that if $W \geq-a$ for some constant a, then W is a Q-supermartingale for any ELMM Q for X.
(b) Let $U: \mathbb{R} \rightarrow \mathbb{R}$ be concave and consider for fixed $Q \in \mathbb{P}_{\text {loc }}$ the problem of maximising $E_{Q}\left[U\left(W_{T}^{v_{0}, \vartheta, c}-c_{T}\right)\right]$ over all self-financing investment and consumption pairs. Assuming that each $U\left(W^{v_{0}, \vartheta, c}\right)$ is Q-integrable and that $j_{0}:=\sup E_{Q}\left[U\left(W_{T}^{v_{0}, \vartheta, c}-c_{T}\right)\right]<\infty$, show that the solution is given by $\vartheta \equiv 0$, $c \equiv 0$.

Exercise 10.2 (Mean-variance hedging). Let (Ω, \mathcal{F}, P) be a probability space with a filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t=0,1, \ldots, T}$. Suppose that the discounted price process X satisfies $E_{Q}\left[\left(\triangle X_{t}\right)^{2} \mid \mathcal{F}_{t-1}\right]<\infty P$-a.s. for all t. Define
$\mathcal{A}:=\left\{\right.$ all predictable processes $\vartheta=\left(\vartheta_{t}\right)_{t=1, \ldots, T}:(\vartheta \cdot X)_{t} \in L^{2}$ for $\left.t=1, \ldots, T\right\}$.
Let $c \in \mathbb{R}$ and $H \in L^{2}\left(\mathcal{F}_{T}, P\right)$. Consider the problem

$$
\min _{\vartheta \in \mathcal{A}} E\left[\left(H-c-(\vartheta \cdot X)_{T}\right)^{2}\right]
$$

The goal of this exercise is to construct a candidate for an optimal strategy using the MOP. For $\vartheta \in \mathcal{A}$, we set

$$
\begin{aligned}
& \mathcal{A}_{t}(\vartheta):=\left\{\vartheta^{\prime} \in \mathcal{A}: \vartheta_{j}^{\prime}=\vartheta_{j} \text { for } j \leq t\right\} \\
& \mathcal{A}_{t}:=\mathcal{A}_{t}(0)=\left\{\vartheta \in \mathcal{A}: \vartheta_{j}=0 \text { for } j \leq t\right\}
\end{aligned}
$$

For $v_{t} \in L^{2}\left(\mathcal{F}_{t}\right)$, we define

$$
\begin{aligned}
& \Gamma_{t}\left(v_{t}, \vartheta^{\prime}\right):=E\left[\left(H-v_{t}-\sum_{j=t+1}^{T} \vartheta_{j}^{\prime} \Delta X_{j}\right)^{2} \mid \mathcal{F}_{t}\right] \\
& Y_{t}\left(v_{t}\right):=\operatorname{essinf}_{\vartheta^{\prime} \in \mathcal{A}_{t}} \Gamma_{t}\left(v_{t}, \vartheta^{\prime}\right)
\end{aligned}
$$

(a) Show that for each t and each $v_{t} \in L^{2}\left(\mathcal{F}_{t}\right)$, the collection of random variables

$$
\Lambda_{t}\left(v_{t}\right):=\left\{\Gamma_{t}\left(v_{t}, \vartheta^{\prime}\right): \vartheta^{\prime} \in \mathcal{A}_{t}\right\}
$$

is closed under taking minima.
(b) Show that for fixed $\vartheta \in \mathcal{A}, x \in \mathbb{R}$, the process $\left(Y_{t}\left(x+(\vartheta \cdot X)_{t}\right)\right)_{t=0, \ldots, T}$ is a submartingale.
(c) Show that $\vartheta^{*} \in \mathcal{A}$ is optimal if and only if the process $\left(Y_{t}\left(c+\left(\vartheta^{*} \cdot X\right)_{t}\right)\right)_{k=0, \ldots, T}$ is a martingale.
(d) Show that $\left(Y_{t}(x)\right)$ satisfies the recursion

$$
Y_{t-1}(x)=\operatorname{ess}_{\inf _{\vartheta^{\prime} \in \mathcal{A}_{t-1}}} E\left[Y_{t}\left(x+\vartheta_{t}^{\prime} \triangle X_{t}\right) \mid \mathcal{F}_{t-1}\right]
$$

with $Y_{T}(x)=(H-x)^{2}$.

Exercise 10.3 Consider a general arbitrage-free single-period market with \mathcal{F}_{0} trivial. Fix x and let $U:(0, \infty) \rightarrow \mathbb{R}$ be a concave, increasing, continuously differentiable (utility) function such that

$$
\begin{equation*}
\sup _{\vartheta \in \mathcal{A}(x)} E\left[U\left(x+\vartheta \cdot \triangle X_{1}\right)\right]<\infty \tag{1}
\end{equation*}
$$

with

$$
\mathcal{A}(x)=\left\{\vartheta \in \mathbb{R}^{d}: x+\vartheta \cdot \Delta X_{1} \geq 0 P \text {-a.s., } U\left(x+\vartheta \cdot \Delta X_{1}\right) \in L^{1}\right\} .
$$

Furthermore, assume that the supremum is attained in an interior point ϑ^{*} of $\mathcal{A}(x)$.
Show that we have the first order condition

$$
E\left[U^{\prime}\left(x+\vartheta^{*} \cdot \triangle X_{1}\right) \triangle X_{1}\right]=0
$$

Hint: You may use that due to concavity,

$$
y \mapsto \frac{U(y)-U(z)}{y-z}, \quad y \in(0, \infty) \backslash\{z\}
$$

is nonincreasing. By optimality, ϑ^{*} is better than $\vartheta^{*}+\varepsilon \eta$ for any $\eta \neq 0$ and $0<\varepsilon \ll 1$; so take the difference of the corresponding utilities, divide by ε and look at $\varepsilon \searrow 0$. Exploit the hint to see that this quantity is monotonic in ε.

