Introduction to Mathematical Finance Exercise sheet 10

Please submit your solutions online until Wednesday 10pm, 08/05/2024.

Exercise 10.1

(a) Let (ϑ, c) be a self-financing investment and consumption pair and

$$
W_{t}=W_{t}^{v_{0}, \vartheta, c}=v_{0}+\sum_{j=1}^{t}\left(\vartheta_{j} \cdot \Delta X_{j}-c_{j-1}\right)
$$

for $t=0,1, \ldots, T$ the corresponding discounted wealth process. Show that if $W \geq-a$ for some constant a, then W is a Q-supermartingale for any ELMM Q for X.
(b) Let $U: \mathbb{R} \rightarrow \mathbb{R}$ be concave and consider for fixed $Q \in \mathbb{P}_{\text {loc }}$ the problem of maximising $E_{Q}\left[U\left(W_{T}^{v_{0}, \vartheta, c}-c_{T}\right)\right]$ over all self-financing investment and consumption pairs. Assuming that each $U\left(W^{v_{0}, \vartheta, c}\right)$ is Q-integrable and that $j_{0}:=\sup E_{Q}\left[U\left(W_{T}^{v_{0}, \vartheta, c}-c_{T}\right)\right]<\infty$, show that the solution is given by $\vartheta \equiv 0$, $c \equiv 0$.

Solution 10.1

(a) This is just Lemma II.6.2. Indeed, without loss of generality assume $a \geq 0$. Write $C_{k}:=\sum_{j=0}^{k-1} c_{j}$. First note that $W_{k}+C_{k}=v_{0}+(\vartheta \cdot X)_{k}$. By Proposition C.4, $W+C$ is a Q-local martingale. Since $W \geq-a$ and $C \geq 0$, we have that $W+C \geq-a$ is thus a Q-supermartingale and Q-integrable. So $C=$ $W+C-W \leq W+C+a$ is Q-integrable. Then $W=W+C-C$ is Q-integrable and then a Q-supermartingale like $W+C$ since C is increasing.
(b) First we observe as in the lecture that

$$
J_{T}(0,0)=\operatorname{ess} \sup _{c_{T}^{\prime}} U\left(v_{0}-c_{T}^{\prime}\right)
$$

and $E_{Q}\left[J_{T}(0,0)\right] \geq \sup _{c_{T}^{\prime}} E_{Q}\left[U\left(v_{0}-c_{T}^{\prime}\right)\right] \geq E_{Q}\left[U\left(v_{0}\right)\right]$. On the other hand, using that $W^{v_{0}, \vartheta, c}$ is Q-supermartingale and U is concave with $U\left(W^{v_{0}, \vartheta, c}\right) \in$ $L^{1}(Q)$ yields that $U\left(W^{v_{0}, \vartheta, c}-c_{T}\right)$ is a Q-supermartingale for any $(\vartheta, c) \in \mathcal{A}$. Thus $U\left(v_{0}\right) \geq \operatorname{ess} \sup _{\left(\vartheta^{\prime}, c^{\prime}\right) \in \mathcal{A}} E_{Q}\left[U\left(W_{T}^{v_{0}, \vartheta^{\prime}, c^{\prime}}-c_{T}^{\prime}\right) \mid \mathcal{F}_{0}\right]$ and

$$
E_{Q}\left[U\left(v_{0}\right)\right] \geq E_{Q}\left[J_{0}(0,0)\right] \geq E_{Q}\left[J_{T}(0,0)\right] \geq E_{Q}\left[U\left(v_{0}\right)\right]
$$

This implies that $J(0,0)$ is a supermartingale with constant expectation j_{0}, thus a martingale. Therefore, by the Martingale Optimality Principle: $\vartheta \equiv 0$, $c \equiv 0$ is optimal.

Exercise 10.2 (Mean-variance hedging). Let (Ω, \mathcal{F}, P) be a probability space with a filtration $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t=0,1, \ldots, T}$. Suppose that the discounted price process X satisfies $E_{Q}\left[\left(\triangle X_{t}\right)^{2} \mid \mathcal{F}_{t-1}\right]<\infty P$-a.s. for all t. Define

$$
\mathcal{A}:=\left\{\text { all predictable processes } \vartheta=\left(\vartheta_{t}\right)_{t=1, \ldots, T}:(\vartheta \cdot X)_{t} \in L^{2} \text { for } t=1, \ldots, T\right\} .
$$

Let $c \in \mathbb{R}$ and $H \in L^{2}\left(\mathcal{F}_{T}, P\right)$. Consider the problem

$$
\min _{\vartheta \in \mathcal{A}} E\left[\left(H-c-(\vartheta \cdot X)_{T}\right)^{2}\right]
$$

The goal of this exercise is to construct a candidate for an optimal strategy using the MOP. For $\vartheta \in \mathcal{A}$, we set

$$
\begin{aligned}
& \mathcal{A}_{t}(\vartheta):=\left\{\vartheta^{\prime} \in \mathcal{A}: \vartheta_{j}^{\prime}=\vartheta_{j} \text { for } j \leq t\right\} \\
& \mathcal{A}_{t}:=\mathcal{A}_{t}(0)=\left\{\vartheta \in \mathcal{A}: \vartheta_{j}=0 \text { for } j \leq t\right\}
\end{aligned}
$$

For $v_{t} \in L^{2}\left(\mathcal{F}_{t}\right)$, we define

$$
\begin{aligned}
& \Gamma_{t}\left(v_{t}, \vartheta^{\prime}\right):=E\left[\left(H-v_{t}-\sum_{j=t+1}^{T} \vartheta_{j}^{\prime} \Delta X_{j}\right)^{2} \mid \mathcal{F}_{t}\right] \\
& Y_{t}\left(v_{t}\right):=\operatorname{essinf}_{\vartheta^{\prime} \in \mathcal{A}_{t}} \Gamma_{t}\left(v_{t}, \vartheta^{\prime}\right)
\end{aligned}
$$

(a) Show that for each t and each $v_{t} \in L^{2}\left(\mathcal{F}_{t}\right)$, the collection of random variables

$$
\Lambda_{t}\left(v_{t}\right):=\left\{\Gamma_{t}\left(v_{t}, \vartheta^{\prime}\right): \vartheta^{\prime} \in \mathcal{A}_{t}\right\}
$$

is closed under taking minima.
(b) Show that for fixed $\vartheta \in \mathcal{A}, x \in \mathbb{R}$, the process $\left(Y_{t}\left(x+(\vartheta \cdot X)_{t}\right)\right)_{t=0, \ldots, T}$ is a submartingale.
(c) Show that $\vartheta^{*} \in \mathcal{A}$ is optimal if and only if the process $\left(Y_{t}\left(c+\left(\vartheta^{*} \cdot X\right)_{t}\right)\right)_{k=0, \ldots, T}$ is a martingale.
(d) Show that $\left(Y_{t}(x)\right)$ satisfies the recursion

$$
Y_{t-1}(x)={\operatorname{ess} \inf _{\vartheta^{\prime} \in \mathcal{A}_{t-1}} E\left[Y_{t}\left(x+\vartheta_{t}^{\prime} \triangle X_{t}\right) \mid \mathcal{F}_{t-1}\right]}
$$

with $Y_{T}(x)=(H-x)^{2}$.

Solution 10.2

(a) Let $\vartheta^{1}, \vartheta^{2} \in \mathcal{A}_{k}$. Define

$$
\vartheta^{3}:=\vartheta^{1} I_{A}+\vartheta^{2} I_{A^{c}}
$$

where $A:=\left\{\Gamma_{k}\left(v_{k}, \vartheta^{1}\right) \leq \Gamma_{k}\left(v_{k}, \vartheta^{2}\right)\right\}$. This gives $\vartheta_{j}^{3}=0$ for $j \leq k$. Using that $\left(\vartheta^{i} \cdot X\right)_{n} \in L^{2}$ for $i \in\{1,2\}$ and $\left(\vartheta^{3} \cdot X\right)_{n}=I_{A}\left(\vartheta^{1} \cdot X\right)_{n}+I_{A^{c}}\left(\vartheta^{2} \cdot X\right)_{n}$, we have $\left(\vartheta^{3} \cdot X\right)_{n} \in L^{2}\left(\mathcal{F}_{n}\right)$ for each n. Thus

$$
\begin{aligned}
H-v_{k}-\sum_{j=k+1}^{T} \vartheta_{j}^{3} \triangle X_{j}= & I_{A}\left(H-v_{k}-\sum_{j=k+1}^{T} \vartheta_{j}^{1} \triangle X_{j}\right) \\
& +I_{A^{c}}\left(H-v_{k}-\sum_{j=k+1}^{T} \vartheta_{j}^{2} \triangle X_{j}\right)
\end{aligned}
$$

is also in L^{2}. Finally, since $A \in \mathcal{F}_{k}$, we obtain

$$
\begin{aligned}
\Gamma_{k}\left(v_{k}, \vartheta^{3}\right) & =E\left[\left(H-v_{k}-\sum_{j=k+1}^{T} \vartheta_{j}^{3} \triangle X_{j}\right)^{2} \mid \mathcal{F}_{k}\right] \\
& =I_{A} \Gamma_{k}\left(v_{k}, \vartheta^{1}\right)+I_{A^{c}} \Gamma_{k}\left(v_{k}, \vartheta^{2}\right) \\
& =\min \left\{\Gamma_{k}\left(v_{k}, \vartheta^{1}\right), \Gamma_{k}\left(v_{k}, \vartheta^{2}\right)\right\} .
\end{aligned}
$$

(b) Fix $k \leq \ell$. We apply part (a) with $v_{k}=x+(\vartheta \cdot X)_{k} \in L^{2}\left(\mathcal{F}_{k}\right)$. So Corollary E. 2 yields

$$
\begin{aligned}
Y_{\ell}\left(x+(\vartheta \cdot X)_{\ell}\right) & =\operatorname{essinf}_{\vartheta^{\prime} \in \mathcal{A}_{\ell}} \Gamma_{\ell}\left(x+(\vartheta \cdot X)_{\ell}, \vartheta^{\prime}\right) \\
& =\downarrow \lim _{n \rightarrow \infty} E\left[\left(H-x-\sum_{j=1}^{\ell} \vartheta_{j} \triangle X_{j}-\sum_{j=\ell+1}^{T} \vartheta_{j}^{n} \triangle X_{j}\right)^{2} \mid \mathcal{F}_{\ell}\right]
\end{aligned}
$$

for a sequence $\left(\vartheta^{n}\right)_{n \in \mathbb{N}} \subseteq \mathcal{A}_{\ell} \subseteq \mathcal{A}_{k}$. Note that all $\Gamma_{\ell}\left(x+(\vartheta \cdot X)_{\ell}, \vartheta^{n}\right)$ are in L^{1} due to the definitions of $\vartheta,\left(\vartheta^{n}\right)_{n \in \mathbb{N}}$. Then using monotone convergence and the tower property, we have

$$
\begin{aligned}
E\left[Y_{\ell}\left(x+(\vartheta \cdot X)_{\ell}\right) \mid \mathcal{F}_{k}\right] & =E\left[\lim _{n \rightarrow \infty} E\left[\left(H-x-\sum_{j=1}^{\ell} \vartheta_{j} \triangle X_{j}-\sum_{j=\ell+1}^{T} \vartheta_{j}^{n} \triangle X_{j}\right)^{2} \mid \mathcal{F}_{\ell}\right] \mid \mathcal{F}_{k}\right] \\
& =\lim _{n \rightarrow \infty} E\left[E\left[\left(H-x-\sum_{j=1}^{\ell} \vartheta_{j} \triangle X_{j}-\sum_{j=\ell+1}^{T} \vartheta_{j}^{n} \triangle X_{j}\right)^{2} \mid \mathcal{F}_{\ell}\right] \mid \mathcal{F}_{k}\right] \\
& =\lim _{n \rightarrow \infty} E\left[\left(H-x-\sum_{j=1}^{k} \vartheta_{j} \Delta X_{j}-\sum_{j=k+1}^{T} \vartheta_{j}^{n} \triangle X_{j}\right)^{2} \mid \mathcal{F}_{k}\right] \\
& \geq \operatorname{essinf}_{\vartheta^{\prime} \in \mathcal{A}_{k}} E\left[\left(H-x-\sum_{j=1}^{k} \vartheta_{j} \triangle X_{j}-\sum_{j=k+1}^{T} \vartheta_{j}^{\prime} \Delta X_{j}\right)^{2} \mid \mathcal{F}_{k}\right] \\
& =Y_{k}\left(x+(\vartheta \cdot X)_{k}\right)
\end{aligned}
$$

and so we have the submartingale property. The integrability then follows from

$$
Y_{T}\left(x+(\vartheta \cdot X)_{T}\right)=\left(H-x-(\vartheta \cdot X)_{T}\right)^{2} \in L^{1}
$$

(c) " \Rightarrow " Let $\vartheta^{*} \in \mathcal{A}$ be optimal. Clearly $\left(Y_{k}\left(x+\left(\vartheta^{*} \cdot X\right)_{k}\right)\right)_{k=0, \ldots, T}$ is adapted. To show that it is a martingale, we only need to show that

$$
E\left[Y_{T}\left(c+\left(\vartheta^{*} \cdot X\right)_{T}\right)\right]=E\left[Y_{0}(c)\right]
$$

By the optimality of ϑ^{*}, we have as in the lecture

$$
\begin{aligned}
E\left[Y_{0}(c)\right] & =E\left[{\left.\operatorname{ess} \inf _{\vartheta \in \mathcal{A}_{0}} E\left[\left(H-c-(\vartheta \cdot X)_{T}\right)^{2} \mid \mathcal{F}_{0}\right]\right]}=\inf _{\vartheta \in \mathcal{A}} E\left[\left(H-c-(\vartheta \cdot X)_{T}\right)^{2}\right]\right. \\
& =E\left[\left(H-c-\left(\vartheta^{*} \cdot X\right)_{T}\right)^{2}\right]=E\left[Y_{T}\left(c+(\vartheta \cdot X)_{T}\right)\right]
\end{aligned}
$$

This gives the desired equality.
" \Leftarrow " Suppose that $\left(Y_{k}\left(x+\left(\vartheta^{*} \cdot X\right)_{k}\right)\right)_{k=0, \ldots, T}$ is a martingale. Then using $Y_{T}\left(c+\left(\vartheta^{*} \cdot X\right)_{T}\right)=\left(H-c-\left(\vartheta^{*} \cdot X\right)_{T}\right)^{2}$ gives
$\inf _{\vartheta \in \mathcal{A}} E\left[\left(H-c-\left(\vartheta^{*} \cdot X\right)_{T}\right)^{2}\right]=E\left[Y_{0}(c)\right]=E\left[Y_{T}\left(c+\left(\vartheta^{*} \cdot X\right)_{T}\right)\right]=E\left[\left(H-c-\left(\vartheta^{*} \cdot X\right)_{T}\right)^{2}\right]$,
which shows that ϑ^{*} is optimal.
(d) By part (b), we have for every fixed $\vartheta^{\prime} \in \mathcal{A}_{k-1}$ that the process $Y .\left(x+\left(\vartheta^{\prime} \cdot X\right)\right.$.) is a submartingale. Because $\left(\vartheta^{\prime} \cdot X\right)_{k-1}=0$ and $\left(\vartheta^{\prime} \cdot X\right)_{k}=\vartheta_{k}^{\prime} \Delta X_{k}$, this gives

$$
Y_{k-1}(x)=Y_{k-1}\left(x+\left(\vartheta^{\prime} \cdot X\right)_{k-1}\right) \leq E\left[Y_{k}\left(x+\left(\vartheta^{\prime} \cdot X\right)_{k}\right) \mid \mathcal{F}_{k-1}\right]=E\left[Y_{k}\left(x+\vartheta_{k}^{\prime} \triangle X_{k}\right) \mid \mathcal{F}_{k-1}\right]
$$

Taking the ess inf yields

$$
Y_{k-1}(x) \leq \operatorname{ess}^{\operatorname{sinf}} \vartheta_{\vartheta^{\prime} \in \mathcal{A}_{k-1}} E\left[Y_{k}\left(x+\vartheta_{k}^{\prime} \triangle X_{k}\right) \mid \mathcal{F}_{k-1}\right]
$$

To show " \geq ", we fix $\vartheta \in \mathcal{A}_{k-1}$ and then compute

$$
\begin{aligned}
E\left[Y_{k}\left(x+\vartheta_{k} \triangle X_{k}\right) \mid \mathcal{F}_{k-1}\right] & \leq E\left[E\left[\left(H-\left(x+\vartheta_{k} \triangle X_{k}\right)-\sum_{j=k+1}^{T} \vartheta_{j} \triangle X_{j}\right)^{2} \mid \mathcal{F}_{k}\right] \mid \mathcal{F}_{k-1}\right] \\
& =E\left[\left(H-x-\sum_{j=k}^{T} \vartheta_{j} \triangle X_{j}\right)^{2} \mid \mathcal{F}_{k-1}\right]
\end{aligned}
$$

Taking the ess inf on both sides, we get

$$
\begin{aligned}
&{\operatorname{ess} \inf _{\vartheta \in \mathcal{A}_{k-1}}} E\left[Y_{k}\left(x+\vartheta_{k} \triangle X_{k}\right) \mid \mathcal{F}_{k-1}\right] \\
& \leq \operatorname{essinf}_{\vartheta \in \mathcal{A}_{k-1}} E\left[\left(H-x-\sum_{j=k}^{T} \vartheta_{j} \triangle X_{j}\right)^{2} \mid \mathcal{F}_{k-1}\right]=Y_{k-1}(x)
\end{aligned}
$$

Exercise 10.3 Consider a general arbitrage-free single-period market with \mathcal{F}_{0} trivial. Fix x and let $U:(0, \infty) \rightarrow \mathbb{R}$ be a concave, increasing, continuously differentiable (utility) function such that

$$
\begin{equation*}
\sup _{\vartheta \in \mathcal{A}(x)} E\left[U\left(x+\vartheta \cdot \triangle X_{1}\right)\right]<\infty \tag{1}
\end{equation*}
$$

with

$$
\mathcal{A}(x)=\left\{\vartheta \in \mathbb{R}^{d}: x+\vartheta \cdot \Delta X_{1} \geq 0 \text { P-a.s., } U\left(x+\vartheta \cdot \Delta X_{1}\right) \in L^{1}\right\} .
$$

Furthermore, assume that the supremum is attained in an interior point ϑ^{*} of $\mathcal{A}(x)$.
Show that we have the first order condition

$$
E\left[U^{\prime}\left(x+\vartheta^{*} \cdot \triangle X_{1}\right) \triangle X_{1}\right]=0
$$

Hint: You may use that due to concavity,

$$
y \mapsto \frac{U(y)-U(z)}{y-z}, \quad y \in(0, \infty) \backslash\{z\}
$$

is nonincreasing. By optimality, ϑ^{*} is better than $\vartheta^{*}+\varepsilon \eta$ for any $\eta \neq 0$ and $0<\varepsilon \ll 1$; so take the difference of the corresponding utilities, divide by ε and look at $\varepsilon \searrow 0$. Exploit the hint to see that this quantity is monotonic in ε.

Solution 10.3

Let η be any non-zero vector. Then by the assumption that ϑ^{*} is an interior point, $\vartheta^{*}+\varepsilon \eta \in \mathcal{A}(x)$ for all $0<\varepsilon \ll 1$. Define

$$
\triangle_{\varepsilon}^{\eta}=\frac{U\left(x+\left(\vartheta^{*}+\varepsilon \eta\right) \cdot \Delta X_{1}\right)-U\left(x+\vartheta^{*} \cdot \triangle X_{1}\right)}{\varepsilon}
$$

for small ε as above. On $\left\{\eta \cdot \triangle X_{1}=0\right\}, \triangle_{\varepsilon}^{\eta} \equiv 0$, and on $\left\{\eta \cdot \triangle X_{1} \neq 0\right\}$,

$$
\triangle_{\varepsilon}^{\eta}=\eta \cdot \triangle X_{1} \frac{U\left(x+\left(\vartheta^{*}+\varepsilon \eta\right) \cdot \triangle X_{1}\right)-U\left(x+\vartheta^{*} \cdot \triangle X_{1}\right)}{\varepsilon \eta \cdot \triangle X_{1}},
$$

so $\triangle_{\varepsilon}^{\eta}$ is monotonically ${ }^{1}$ increasing to $\eta \cdot \triangle X_{1} U^{\prime}\left(x+\vartheta^{*} \cdot \triangle X_{1}\right)$ as $\varepsilon \searrow 0$.
Note that all $\triangle_{\varepsilon}^{\eta} \in L^{1}(P)$, so that we can use monotone convergence. Moreover, by optimality, $E\left[\triangle_{\varepsilon}^{\eta}\right] \leq 0$ and therefore, by monotone convergence,

$$
-\infty<E\left[\triangle_{\varepsilon}^{\eta}\right] \leq E\left[U^{\prime}\left(x+\vartheta^{*} \cdot \triangle X_{1}\right) \eta \cdot \triangle X_{1}\right]=\lim _{\varepsilon \searrow 0} E\left[\triangle_{\varepsilon}^{\eta}\right] \leq 0
$$

Replacing η by $-\eta$ gives also ≥ 0; so $E\left[U^{\prime}\left(x+\vartheta^{*} \cdot \triangle X_{1}\right) \eta \cdot \triangle X_{1}\right]=0$. Finally, since η can be chosen arbitrary, we can take $\eta=e^{i}$ for $i=1, \ldots, d$ to get

$$
E\left[U^{\prime}\left(x+\vartheta^{*} \cdot \triangle X_{1}\right) \triangle X_{1}\right]=0
$$

[^0]
[^0]: ${ }^{1}$ This is easily seen by splitting into two cases depending on the sign of $\eta \cdot \triangle X_{1}$.

