Introduction to Mathematical Finance Exercise sheet 11

Please submit your solutions online until Wednesday 10pm, 15/05/2023.
Exercise 11.1 Recall that $\mathcal{C}(x):=\left\{f \in L_{+}^{0}: f \leq V_{T}\right.$ for some $\left.V \in \mathcal{V}(x)\right\}$ and $\mathcal{D}(z):=\left\{h \in L_{+}^{0}: h \leq Z_{T}\right.$ for some $\left.Z \in \mathcal{Z}(z)\right\}$.
(a) Show that $\mathcal{C}(x)$ and $\mathcal{D}(z)$ are both convex and solid (i.e., $Y \in A$ and $Y^{\prime} \leq Y$ implies $Y^{\prime} \in A$).
(b) Show that $j(z):=\inf _{Z \in \mathcal{Z}(z)} E\left[J\left(Z_{T}\right)\right]=\inf _{h \in \mathcal{D}(z)} E[J(h)]$.
(c) Show that $E\left[J\left(Z_{T}\right)\right]$, for $Z \in \mathcal{Z}(z)$, is always well defined in $(-\infty,+\infty]$.

Exercise 11.2 Let $U: \mathbb{R} \rightarrow \mathbb{R}$ be a strictly increasing utility function and consider a general arbitrage-free market in finite discrete time, with horizon $T \in \mathbb{N}$ and with \mathcal{F}_{0} trivial. Recall that $\mathcal{C}=G_{T}(\Theta)-L_{+}^{0}$.
(a) Show that an optimizer for

$$
u(x)=\sup _{\vartheta \in \Theta} E\left[U\left(x+G_{T}(\vartheta)\right]\right.
$$

can be obtained from an optimizer for

$$
u_{\mathcal{C}}(x)=\sup _{f \in \mathcal{C}} E[U(x+f)],
$$

and vice versa.
(b) Denote by \mathbb{P}_{a} the set of absolutely continuous martingale measures. Show that if Ω is finite and $f \in L^{0}$, then

$$
f \in \mathcal{C} \quad \Longleftrightarrow \quad E_{Q}[f] \leq 0, \quad \forall Q \in \mathbb{P}_{a}
$$

Exercise 11.3 Consider a general market in finite discrete time with horizon $T \in \mathbb{N}$. Let $U:(0, \infty) \rightarrow \mathbb{R}$ be an increasing and concave utility function, and denote by u the indirect utility from maximizing the utility of final wealth, i.e.,

$$
u(x)=\sup _{\theta \in \Theta_{a d m}^{x}} E\left[U\left(x+G_{T}(\vartheta)\right)\right]
$$

for $x>0$, where $\Theta_{a d m}^{x}=\{\vartheta \in \Theta: \vartheta$ is x-admissible $\}$.
(a) Assume that $u\left(x_{0}\right)<\infty$ for some $x_{0}>0$. Show that u is increasing, concave and $u(x)<\infty$ for all $x>0$.
(b) Show that if U is unbounded from above and the market admits an arbitrage opportunity, then $u \equiv+\infty$. What happens if U is not unbounded from above?

Exercise 11.4

(a) Suppose that $U:(0, \infty) \mapsto \mathbb{R}$ is strictly increasing, strictly concave and C^{1}. Show that for any $Q \in \mathbb{P}_{e}$, we have

$$
\sup _{f \in L^{0}} E\left[U(f)-f \lambda \frac{d Q}{d P}\right]=E\left[\sup _{z>0}\left(U(z)-z \lambda \frac{d Q}{d P}\right)\right]
$$

(b) Using the notations from Theorem IV.0.5 and Theorem IV.0.3, show that $Q^{*}=Q^{*}\left(\lambda^{*}\right)$, i.e., the measure Q^{*} constructed in the proof of Theorem IV.0.5 coincides with the optimal $Q^{*}\left(\lambda^{*}\right)$ for the dual problem in Theorem IV. 0.3 with the parameter $\lambda=\lambda^{*}$ from the proof of Theorem IV.0.5.

