
ETH Zürich, SS 2024
Prof. Beatrice Acciaio

Coordinator
Qinxin Yan

Introduction to Mathematical Finance
Exercise sheet 11

Please submit your solutions online until Wednesday 10pm, 15/05/2023.

Exercise 11.1 Recall that C(x) := {f ∈ L0
+ : f ≤ VT for some V ∈ V(x)} and

D(z) := {h ∈ L0
+ : h ≤ ZT for some Z ∈ Z(z)}.

(a) Show that C(x) and D(z) are both convex and solid (i.e., Y ∈ A and Y ′ ≤ Y
implies Y ′ ∈ A).

(b) Show that j(z) := infZ∈Z(z) E[J(ZT )] = infh∈D(z) E[J(h)].

(c) Show that E[J(ZT )], for Z ∈ Z(z), is always well defined in (−∞, +∞].

Solution 11.1

(a) The fact that C(x) and D(z) are solid is direct from their definitions. We show
that D(z) is convex. The argument for C(x) is analogous. Let h1, h2 ∈ D(z)
with h1 ≤ Z1

T and h2 ≤ Z2
T and Z1, Z2 ∈ Z(z). Then for λ ∈ (0, 1), we have

λh1 + (1 − λ)h2 ≤ λZ1
T + (1 − λ)Z2

T .

Moreover, the process λZ1 + (1 − λ)Z2 is still a nonnegative adapted process
with λZ1

0 + (1 − λ)Z2
0 = z and (λZ1 + (1 − λ)Z2)V being a supermartingale

for all V ∈ V(1). Hence λZ1 + (1 − λ)Z2 ∈ Z(z) and D(z) is convex.

(b) For “≥”, we just notice that ZT (z) ⊆ D(z). For “≤”, we use that J is decreasing
and h ≤ ZT to obtain J(ZT ) ≤ J(h) which implies E[J(ZT )] ≤ E[J(h)]. Taking
suprema on both sides yields the conclusion.

(c) For any x > 0, J(ZT ) ≥ U(x) − xZT gives E[ZT ] ≥ U(x) − xE[ZT ] and
E[ZT ] ≤ z; so

E[J(ZT )] ≥ sup
x>0

(
U(x) − xz

)
= J(z) > −∞.
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Exercise 11.2 Let U : R → R be a strictly increasing utility function and consider
a general arbitrage-free market in finite discrete time, with horizon T ∈ N and with
F0 trivial. Recall that C = GT (Θ) − L0

+.
(a) Show that an optimizer for

u(x) = sup
ϑ∈Θ

E [U(x + GT (ϑ)]

can be obtained from an optimizer for
uC(x) = sup

f∈C
E [U(x + f)] ,

and vice versa.
(b) Denote by Pa the set of absolutely continuous martingale measures. Show that

if Ω is finite and f ∈ L0, then
f ∈ C ⇐⇒ EQ[f ] ≤ 0, ∀Q ∈ Pa.

Solution 11.2
(a) First note that GT (Θ) ⊆ C. Therefore, uC(x) ≥ u(x).

Suppose f ∗ is a maximizer. Then, since f ∗ ∈ C, f ∗ = GT (ϑ∗) − Y for some
ϑ∗ ∈ Θ and Y ≥ 0, and

uC(x) = E
[
U
(
x + GT (ϑ∗) − Y

)]
≤ E

[
U
(
x + GT (ϑ∗)

)]
≤ u(x).

Since U is strictly increasing, Y must be identically zero because otherwise the
first inequality above becomes strict. Hence, uC(x) = u(x), and the optimizer
f ∗ corresponds to an optimizer ϑ∗ for the first problem.
On the other hand, if ϑ∗ is an optimizer of the first problem, then f ∗ = GT (ϑ∗)
must optimize the second, for otherwise there would exist a strictly better f ′,
and by the argument above also a strictly better ϑ′, violating the assumption
that ϑ∗ is an optimizer.

(b) Since Ω is finite, every f is bounded from below by minω f . Therefore, by
Theorem II.7.2,

f ∈ C ⇐⇒ EQ[f ] ≤ 0, ∀Q ∈ Pe.

We need to extend this statement to Pa. If EQ[f ] ≤ 0 for all Q ∈ Pa, the
desired implication holds trivially. On the other hand, suppose f ∈ C. Then
EQ[f ] ≤ 0 for all EMMs Q. Thus,

sup
Q∈Pe

EQ[f ] ≤ 0,

and, by Exercise 3.1,
sup
Q∈Pa

EQ[f ] ≤ 0.

This is what we wanted to show.
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Exercise 11.3 Consider a general market in finite discrete time with horizon T ∈ N.
Let U : (0, ∞) → R be an increasing and concave utility function, and denote by u
the indirect utility from maximizing the utility of final wealth, i.e.,

u(x) = sup
θ∈Θx

adm

E
[
U
(
x + GT (ϑ)

)]
,

for x > 0, where Θx
adm = {ϑ ∈ Θ : ϑ is x-admissible}.

(a) Assume that u(x0) < ∞ for some x0 > 0. Show that u is increasing, concave
and u(x) < ∞ for all x > 0.

(b) Show that if U is unbounded from above and the market admits an arbitrage
opportunity, then u ≡ +∞. What happens if U is not unbounded from above?

Solution 11.3

(a) For any x ≤ y, we have that

E
[
U
(
x + GT (ϑ)

)]
≤ E

[
U
(
y + GT (ϑ)

)]
.

Taking the supremum on both sides yields u(x) ≤ u(y).
Let z = λx + (1 − λ)y for some λ ∈ [0, 1]. For any ϑx ∈ Θx

adm and ϑy ∈ Θy
adm,

it follows from linearity of GT (·) that

z + GT

(
λϑx + (1 − λ)ϑy

)
= λ

(
x + GT (ϑx)

)
+ (1 − λ)

(
y + GT (ϑy)

)
≥ 0,

i.e., ϑz := λϑx + (1 − λ)ϑy ∈ Θz
adm. Finally, using the above inequality and the

concavity of U ,

E
[
U
(
z + GT (ϑz)

)]
≥ λE

[
U
(
x + GT (ϑx)

)]
+ (1 − λ)E

[
U
(
y + GT (ϑy)

)]
.

Taking the supremum over ϑx and ϑy preserves the inequality, showing that u
is also concave.
Let x be any point. By monotonicity, we are done if x ≤ x0, so assume that
x > x0. Let y ∈ (0, x0). Then x0 = λx + (1 − λ)y for some λ ∈ (0, 1). By
concavity,

u(x0) ≥ λu(x) + (1 − λ)u(y),

showing that u(x) is finite.

(b) Let ϑa denote an arbitrage opportunity with GT (ϑa) ≥ 0 P -a.s. and GT (ϑa) > 0
on some set A with P [A] > 0. Hence, ϑa ∈ Θx

adm for every x, and the same
holds for nϑa, n ∈ N. Thus,

u(x) ≥ E[U(x)1Ac ] + E
[
U
(
x + nGT (ϑa)

)
1A

]
.
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By monotone convergence, the second term converges to E[U(∞)1A] as n → ∞,
and by the assumption that U is unbounded, this value is infinite. Thus,
u(x) = +∞ for every x.
Suppose that U is bounded from above. So U(∞) := lim x → ∞U(x) exists in
R. Set A := {GT (ϑa) > 0} and P [A] = α > 0. Then (x + nGT (ϑa))1A → ∞1A

which implies u(x) ≥ (1 − α)U(x) + αU(∞). This in turn yields

lim inf
x→∞

u(x)
U(x) ≥ 1.

But clearly u(x) ≤ U(∞) for all x. So we have

lim sup
x→∞

u(x)
U(x) ≤ 1,

and therefore
lim

x→∞

u(x)
U(x) = 1.
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Exercise 11.4

(a) Suppose that U : (0, ∞) 7→ R is strictly increasing, strictly concave and C1.
Show that for any Q ∈ Pe, we have

sup
f∈L0

E

[
U(f) − fλ

dQ

dP

]
= E

[
sup
z>0

(
U(z) − zλ

dQ

dP

)]
.

(b) Using the notations from Theorem IV.0.5 and Theorem IV.0.3, show that
Q∗ = Q∗(λ∗), i.e., the measure Q∗ constructed in the proof of Theorem IV.0.5
coincides with the optimal Q∗(λ∗) for the dual problem in Theorem IV.0.3 with
the parameter λ = λ∗ from the proof of Theorem IV.0.5.

Solution 11.4

(a) ” ≤ ” is clear. For ” ≥ ”, note that sup
z>0

(
U(z) − zy

)
= J(y) for y > 0 is

attained in z = (U ′)−1(y). So if we set f̃ := (U ′)−1(λdQ
dP

), then f̃ ∈ L0 and

E

[
sup
z>0

(
U(z) − zλ

dQ

dP

)]
= E

[
U(f̃) − f̃λ

dQ

dP

]
≤ sup

f∈L0
E

[
U(f) − fλ

dQ

dP

]
.

(b) Using the notations from the lectures,

E

[
J

(
λ∗ dQ∗

dP

)]
= E

[
U(f ∗)

]
− λ∗x ≤ E

[
J

(
λ∗ dQ

dP

)]
∀Q,

hence Q∗ = Q∗(λ∗).
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