Introduction to Mathematical Finance Exercise sheet 11

Please submit your solutions online until Wednesday 10pm, 15/05/2023.
Exercise 11.1 Recall that $\mathcal{C}(x):=\left\{f \in L_{+}^{0}: f \leq V_{T}\right.$ for some $\left.V \in \mathcal{V}(x)\right\}$ and $\mathcal{D}(z):=\left\{h \in L_{+}^{0}: h \leq Z_{T}\right.$ for some $\left.Z \in \mathcal{Z}(z)\right\}$.
(a) Show that $\mathcal{C}(x)$ and $\mathcal{D}(z)$ are both convex and solid (i.e., $Y \in A$ and $Y^{\prime} \leq Y$ implies $Y^{\prime} \in A$).
(b) Show that $j(z):=\inf _{Z \in \mathcal{Z}(z)} E\left[J\left(Z_{T}\right)\right]=\inf _{h \in \mathcal{D}(z)} E[J(h)]$.
(c) Show that $E\left[J\left(Z_{T}\right)\right]$, for $Z \in \mathcal{Z}(z)$, is always well defined in $(-\infty,+\infty]$.

Solution 11.1

(a) The fact that $\mathcal{C}(x)$ and $\mathcal{D}(z)$ are solid is direct from their definitions. We show that $\mathcal{D}(z)$ is convex. The argument for $\mathcal{C}(x)$ is analogous. Let $h_{1}, h_{2} \in \mathcal{D}(z)$ with $h_{1} \leq Z_{T}^{1}$ and $h_{2} \leq Z_{T}^{2}$ and $Z^{1}, Z^{2} \in \mathcal{Z}(z)$. Then for $\lambda \in(0,1)$, we have

$$
\lambda h_{1}+(1-\lambda) h_{2} \leq \lambda Z_{T}^{1}+(1-\lambda) Z_{T}^{2}
$$

Moreover, the process $\lambda Z^{1}+(1-\lambda) Z^{2}$ is still a nonnegative adapted process with $\lambda Z_{0}^{1}+(1-\lambda) Z_{0}^{2}=z$ and $\left(\lambda Z^{1}+(1-\lambda) Z^{2}\right) V$ being a supermartingale for all $V \in \mathcal{V}(1)$. Hence $\lambda Z^{1}+(1-\lambda) Z^{2} \in \mathcal{Z}(z)$ and $\mathcal{D}(z)$ is convex.
(b) For " \geq ", we just notice that $\mathcal{Z}_{T}(z) \subseteq \mathcal{D}(z)$. For " \leq ", we use that J is decreasing and $h \leq Z_{T}$ to obtain $J\left(Z_{T}\right) \leq J(h)$ which implies $E\left[J\left(Z_{T}\right)\right] \leq E[J(h)]$. Taking suprema on both sides yields the conclusion.
(c) For any $x>0, J\left(Z_{T}\right) \geq U(x)-x Z_{T}$ gives $E\left[Z_{T}\right] \geq U(x)-x E\left[Z_{T}\right]$ and $E\left[Z_{T}\right] \leq z$; so

$$
E\left[J\left(Z_{T}\right)\right] \geq \sup _{x>0}(U(x)-x z)=J(z)>-\infty
$$

Exercise 11.2 Let $U: \mathbb{R} \rightarrow \mathbb{R}$ be a strictly increasing utility function and consider a general arbitrage-free market in finite discrete time, with horizon $T \in \mathbb{N}$ and with \mathcal{F}_{0} trivial. Recall that $\mathcal{C}=G_{T}(\Theta)-L_{+}^{0}$.
(a) Show that an optimizer for

$$
u(x)=\sup _{\vartheta \in \Theta} E\left[U\left(x+G_{T}(\vartheta)\right]\right.
$$

can be obtained from an optimizer for

$$
u_{\mathcal{C}}(x)=\sup _{f \in \mathcal{C}} E[U(x+f)]
$$

and vice versa.
(b) Denote by \mathbb{P}_{a} the set of absolutely continuous martingale measures. Show that if Ω is finite and $f \in L^{0}$, then

$$
f \in \mathcal{C} \quad \Longleftrightarrow \quad E_{Q}[f] \leq 0, \quad \forall Q \in \mathbb{P}_{a}
$$

Solution 11.2

(a) First note that $G_{T}(\Theta) \subseteq \mathcal{C}$. Therefore, $u_{\mathcal{C}}(x) \geq u(x)$.

Suppose f^{*} is a maximizer. Then, since $f^{*} \in \mathcal{C}, f^{*}=G_{T}\left(\vartheta^{*}\right)-Y$ for some $\vartheta^{*} \in \Theta$ and $Y \geq 0$, and

$$
u_{\mathcal{C}}(x)=E\left[U\left(x+G_{T}\left(\vartheta^{*}\right)-Y\right)\right] \leq E\left[U\left(x+G_{T}\left(\vartheta^{*}\right)\right)\right] \leq u(x)
$$

Since U is strictly increasing, Y must be identically zero because otherwise the first inequality above becomes strict. Hence, $u_{\mathcal{C}}(x)=u(x)$, and the optimizer f^{*} corresponds to an optimizer ϑ^{*} for the first problem.
On the other hand, if ϑ^{*} is an optimizer of the first problem, then $f^{*}=G_{T}\left(\vartheta^{*}\right)$ must optimize the second, for otherwise there would exist a strictly better f^{\prime}, and by the argument above also a strictly better ϑ^{\prime}, violating the assumption that ϑ^{*} is an optimizer.
(b) Since Ω is finite, every f is bounded from below by $\min _{\omega} f$. Therefore, by Theorem II.7.2,

$$
f \in \mathcal{C} \quad \Longleftrightarrow \quad E_{Q}[f] \leq 0, \quad \forall Q \in \mathbb{P}_{e}
$$

We need to extend this statement to \mathbb{P}_{a}. If $E_{Q}[f] \leq 0$ for all $Q \in \mathbb{P}_{a}$, the desired implication holds trivially. On the other hand, suppose $f \in \mathcal{C}$. Then $E_{Q}[f] \leq 0$ for all EMMs Q. Thus,

$$
\sup _{Q \in \mathbb{P}_{e}} E_{Q}[f] \leq 0
$$

and, by Exercise 3.1,

$$
\sup _{Q \in \mathbb{P}_{a}} E_{Q}[f] \leq 0
$$

This is what we wanted to show.

Exercise 11.3 Consider a general market in finite discrete time with horizon $T \in \mathbb{N}$. Let $U:(0, \infty) \rightarrow \mathbb{R}$ be an increasing and concave utility function, and denote by u the indirect utility from maximizing the utility of final wealth, i.e.,

$$
u(x)=\sup _{\theta \in \Theta_{a d m}^{x}} E\left[U\left(x+G_{T}(\vartheta)\right)\right]
$$

for $x>0$, where $\Theta_{a d m}^{x}=\{\vartheta \in \Theta: \vartheta$ is x-admissible $\}$.
(a) Assume that $u\left(x_{0}\right)<\infty$ for some $x_{0}>0$. Show that u is increasing, concave and $u(x)<\infty$ for all $x>0$.
(b) Show that if U is unbounded from above and the market admits an arbitrage opportunity, then $u \equiv+\infty$. What happens if U is not unbounded from above?

Solution 11.3

(a) For any $x \leq y$, we have that

$$
E\left[U\left(x+G_{T}(\vartheta)\right)\right] \leq E\left[U\left(y+G_{T}(\vartheta)\right)\right]
$$

Taking the supremum on both sides yields $u(x) \leq u(y)$.
Let $z=\lambda x+(1-\lambda) y$ for some $\lambda \in[0,1]$. For any $\vartheta_{x} \in \Theta_{a d m}^{x}$ and $\vartheta_{y} \in \Theta_{a d m}^{y}$, it follows from linearity of $G_{T}(\cdot)$ that

$$
z+G_{T}\left(\lambda \vartheta_{x}+(1-\lambda) \vartheta_{y}\right)=\lambda\left(x+G_{T}\left(\vartheta_{x}\right)\right)+(1-\lambda)\left(y+G_{T}\left(\vartheta_{y}\right)\right) \geq 0
$$

i.e., $\vartheta_{z}:=\lambda \vartheta_{x}+(1-\lambda) \vartheta_{y} \in \Theta_{a d m}^{z}$. Finally, using the above inequality and the concavity of U,

$$
E\left[U\left(z+G_{T}\left(\vartheta_{z}\right)\right)\right] \geq \lambda E\left[U\left(x+G_{T}\left(\vartheta_{x}\right)\right)\right]+(1-\lambda) E\left[U\left(y+G_{T}\left(\vartheta_{y}\right)\right)\right]
$$

Taking the supremum over ϑ_{x} and ϑ_{y} preserves the inequality, showing that u is also concave.
Let x be any point. By monotonicity, we are done if $x \leq x_{0}$, so assume that $x>x_{0}$. Let $y \in\left(0, x_{0}\right)$. Then $x_{0}=\lambda x+(1-\lambda) y$ for some $\lambda \in(0,1)$. By concavity,

$$
u\left(x_{0}\right) \geq \lambda u(x)+(1-\lambda) u(y)
$$

showing that $u(x)$ is finite.
(b) Let ϑ^{a} denote an arbitrage opportunity with $G_{T}\left(\vartheta^{a}\right) \geq 0 P$-a.s. and $G_{T}\left(\vartheta^{a}\right)>0$ on some set A with $P[A]>0$. Hence, $\vartheta^{a} \in \Theta_{a d m}^{x}$ for every x, and the same holds for $n \vartheta^{a}, n \in \mathbb{N}$. Thus,

$$
u(x) \geq E\left[U(x) 1_{A^{c}}\right]+E\left[U\left(x+n G_{T}\left(\vartheta^{a}\right)\right) 1_{A}\right]
$$

By monotone convergence, the second term converges to $E\left[U(\infty) 1_{A}\right]$ as $n \rightarrow \infty$, and by the assumption that U is unbounded, this value is infinite. Thus, $u(x)=+\infty$ for every x.
Suppose that U is bounded from above. So $U(\infty):=\lim x \rightarrow \infty U(x)$ exists in \mathbb{R}. Set $A:=\left\{G_{T}\left(\vartheta^{a}\right)>0\right\}$ and $P[A]=\alpha>0$. Then $\left(x+n G_{T}\left(\vartheta^{a}\right)\right) \mathbb{1}_{A} \rightarrow \infty \mathbb{1}_{A}$ which implies $u(x) \geq(1-\alpha) U(x)+\alpha U(\infty)$. This in turn yields

$$
\lim \inf _{x \rightarrow \infty} \frac{u(x)}{U(x)} \geq 1
$$

But clearly $u(x) \leq U(\infty)$ for all x. So we have

$$
\lim \sup _{x \rightarrow \infty} \frac{u(x)}{U(x)} \leq 1
$$

and therefore

$$
\lim _{x \rightarrow \infty} \frac{u(x)}{U(x)}=1
$$

Exercise 11.4

(a) Suppose that $U:(0, \infty) \mapsto \mathbb{R}$ is strictly increasing, strictly concave and C^{1}. Show that for any $Q \in \mathbb{P}_{e}$, we have

$$
\sup _{f \in L^{0}} E\left[U(f)-f \lambda \frac{d Q}{d P}\right]=E\left[\sup _{z>0}\left(U(z)-z \lambda \frac{d Q}{d P}\right)\right] .
$$

(b) Using the notations from Theorem IV.0.5 and Theorem IV.0.3, show that $Q^{*}=Q^{*}\left(\lambda^{*}\right)$, i.e., the measure Q^{*} constructed in the proof of Theorem IV. 0.5 coincides with the optimal $Q^{*}\left(\lambda^{*}\right)$ for the dual problem in Theorem IV. 0.3 with the parameter $\lambda=\lambda^{*}$ from the proof of Theorem IV.0.5.

Solution 11.4

(a) " $\leq "$ is clear. For $" \geq "$, note that $\sup _{z>0}(U(z)-z y)=J(y)$ for $y>0$ is attained in $z=\left(U^{\prime}\right)^{-1}(y)$. So if we set $\tilde{f}:=\left(U^{\prime}\right)^{-1}\left(\lambda \frac{d Q}{d P}\right)$, then $\tilde{f} \in L^{0}$ and

$$
E\left[\sup _{z>0}\left(U(z)-z \lambda \frac{d Q}{d P}\right)\right]=E\left[U(\tilde{f})-\tilde{f} \lambda \frac{d Q}{d P}\right] \leq \sup _{f \in L^{0}} E\left[U(f)-f \lambda \frac{d Q}{d P}\right]
$$

(b) Using the notations from the lectures,

$$
E\left[J\left(\lambda^{*} \frac{d Q^{*}}{d P}\right)\right]=E\left[U\left(f^{*}\right)\right]-\lambda^{*} x \leq E\left[J\left(\lambda^{*} \frac{d Q}{d P}\right)\right] \quad \forall Q
$$

hence $Q^{*}=Q^{*}\left(\lambda^{*}\right)$.

