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Exercise 12.1
(a) Prove the uniqueness of the solution hf to the dual problem.
(b) Assuming z # 2’ and j(z),j(z") < oo, prove that P[hl # h%| > 0.

Solution 12.1

(a) Suppose to the contrary that A%, hY are two solutions with P[h} # h > 0.
Set hg = 3(h% + h%). Since J is strictly convex, we have on {h} # h:}
J(ho) < 5(J(h%) + J(h*)), and J(hg) < 1/2(J(h;‘) + J(ﬁ’;)) P—a.s. Because

{h* # h*} has positive probability, we obtain
1 * I * .
ElJ(ho)] < S E[(J(h2) + J(R2))] = 5 (2).

But note that hy € D(2) due to the convexity of D(z). This contradicts the
optimality of h}.

(b) Suppose to the contrary that hf = hf, P-as. for z < z/. Then j(2/) =
E[J(h%)] = E[J(hY)]. Since ht < Zr for some Z € Z(z), then the process Z' :=
Z+ (2 —2)Z € Z(2) and hi+ (2 — 2)Zr < Zf, hence hi+ (2 —2)Zr € D(2).
Since J is strictly decreasing, we have E[J(hi+ (2" —2)Zr)] < E[J(h%)] = j(Z'),
which contradicts the optimality of k%, because h’ + (2’ — 2)Zr # hl, P-a.s.
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Exercise 12.2

(a) Analogously to the proof of Lemma IV.5.2 show that, for fixed 0 < < 1 we
can find a constant C' < oo and yy > 0 such that

~J
—J (uy) < C’;y) for 0 <y < yo.

(b) Prove that if z, — z and all z,, and z are in the interior of {j < oo} and u, 11,
then
Jim ELRZ I(pnh?, )] = E[RZI(R)).

Hint: Use (a) and almost repeat the proof of Lemma IV.5.3.

Solution 12.2

(a) From Lemma IV.5.2 we know that we can find a constant C' < oo and yo > 0

such that ;
—J'(y) < C(yy) for 0 < y < o,
and hence for C' = C'/p we get
A
—J'(ny) < C(Sy)-

Since J is convex and pu < 1, then J(y) > J(uy) + J'(ny)(y — py), that means
that J(uy) < J(y) — J'(uy)y(1 — p), so that

—J'(ny) < C(‘];y) — J'(py) (1 — u)>7

and hence after defying C' = C /1 we get

—J (py) < C’igw for 0 <y < yo.

(b) We first rewrite h% I(p,hi ) = py ' (unhi I(pahy )); so it suffices to show that
tim, Eljunh, Huh, ) = BT

n—0o0
We now argue as in the proof of Lemma IV.5.3.

First by Lemma IV.5.1 and continuity of 1 > 0, u,h% I(punhi ) — hiI(R}) in
L°. So we only need to prove uniform integrability.

I. This part is the same. Since [ is decreasing and U is increasing, we get for
Y > yo = 0 that

0<yI(y) =U(IW) = T) < U(Iw)) + 7" ()
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and therefore
0< X, = ,unhzn[(:unhznﬂl{unh;nZyo} < ‘U([@O))‘ +J7 (k)

If z, = z, p, — p, then (z,) is bounded by some 2’ and (p,,) is bounded by
some £/, say, and so all the p1,,h} lie in D(p'2"). But we know from IV.3.3 that
the family {J~(h) : h € D(¢/2')} is uniformly integrable, and so also (X,)nen
is uniformly integrable.

I1. From (a) it follows that there exist C' < oo and o > 0 such that

0 < pnhZ, L(pn i ) gunnz, <yoy < CLI(B,)],

Zn

so it is enough to prove that (|J(h} )|)nen is uniformly integrable, but the fact
that such a sequence is uniformly integrable is shown in the proof of Lemma
IV.5.3.
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Exercise 12.3 Consider a general market in finite discrete time with horizon T" € N.
Let U : (0,00) — R be an increasing and concave utility function, and denote by u
the indirect utility from maximizing the utility of final wealth, i.e.,

u(z) = sup F
JeO®

U+ GT(ﬁ))] ,
for x > 0, where ©% = {¥ € © : ¥ is z-admissible}.
Suppose that U is strictly increasing, U(oco) < oo and X satisfies NA. Show that

if there exists an optimal strategy ¥* for z, then u(x) < U(c0).

Solution 12.3 Fix z > 0. Let ¥* be an optimal strategy. Denote A := {z+Gr(V¥*) =
oo}. Since X satisfies NA, then P(A) < 1. Then, since U is strictly increasing:

u(z) = PIAJU(00) + E[I(A9)U (2 + Gr(9"))] < U(c0).
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