Introduction to Mathematical Finance Exercise sheet 12

Exercise 12.1

(a) Prove the uniqueness of the solution h_{z}^{*} to the dual problem.
(b) Assuming $z \neq z^{\prime}$ and $j(z), j\left(z^{\prime}\right)<\infty$, prove that $P\left[h_{z}^{*} \neq h_{z^{\prime}}^{*}\right]>0$.

Solution 12.1

(a) Suppose to the contrary that $h_{z}^{*}, \tilde{h}_{z}^{*}$ are two solutions with $P\left[h_{z}^{*} \neq \tilde{h}_{z}^{*}\right]>0$. Set $h_{0}:=\frac{1}{2}\left(h_{z}^{*}+\tilde{h}_{z}^{*}\right)$. Since J is strictly convex, we have on $\left\{h_{z}^{*} \neq \tilde{h}_{z}^{*}\right\}$ $J\left(h_{0}\right)<\frac{1}{2}\left(J\left(h_{z}^{*}\right)+J\left(\tilde{h}_{z}^{*}\right)\right)$, and $J\left(h_{0}\right) \leq 1 / 2\left(J\left(h_{z}^{*}\right)+J\left(\tilde{h}_{z}^{*}\right)\right) P$-a.s. Because $\left\{h_{z}^{*} \neq \tilde{h}_{z}^{*}\right\}$ has positive probability, we obtain

$$
E\left[J\left(h_{0}\right)\right]<\frac{1}{2} E\left[\left(J\left(h_{z}^{*}\right)+J\left(\tilde{h}_{z}^{*}\right)\right)\right]=j(z) .
$$

But note that $h_{0} \in \mathcal{D}(z)$ due to the convexity of $\mathcal{D}(z)$. This contradicts the optimality of h_{z}^{*}.
(b) Suppose to the contrary that $h_{z}^{*}=h_{z^{\prime}}^{*} P$-a.s. for $z<z^{\prime}$. Then $j\left(z^{\prime}\right)=$ $E\left[J\left(h_{z^{\prime}}^{*}\right)\right]=E\left[J\left(h_{z}^{*}\right)\right]$. Since $h_{z}^{*} \leq Z_{T}$ for some $Z \in \mathcal{Z}(z)$, then the process $Z^{\prime}:=$ $Z+\left(z^{\prime}-z\right) Z \in \mathcal{Z}\left(z^{\prime}\right)$ and $h_{z}^{*}+\left(z^{\prime}-z\right) Z_{T} \leq Z_{T}^{\prime}$, hence $h_{z}^{*}+\left(z^{\prime}-z\right) Z_{T} \in \mathcal{D}\left(z^{\prime}\right)$. Since J is strictly decreasing, we have $E\left[J\left(h_{z}^{*}+\left(z^{\prime}-z\right) Z_{T}\right)\right]<E\left[J\left(h_{z}^{*}\right)\right]=j\left(z^{\prime}\right)$, which contradicts the optimality of $h_{z^{\prime}}^{*}$ because $h_{z}^{*}+\left(z^{\prime}-z\right) Z_{T} \neq h_{z^{\prime}}^{*} P$-a.s.

Exercise 12.2

(a) Analogously to the proof of Lemma IV.5.2 show that, for fixed $0<\mu<1$ we can find a constant $\tilde{C}<\infty$ and $y_{0}>0$ such that

$$
-J^{\prime}(\mu y)<\tilde{C} \frac{J(y)}{y} \quad \text { for } 0<y<y_{0}
$$

(b) Prove that if $z_{n} \rightarrow z$ and all z_{n} and z are in the interior of $\{j<\infty\}$ and $\mu_{n} \uparrow 1$, then

$$
\lim _{n \rightarrow \infty} E\left[h_{z_{n}}^{*} I\left(\mu_{n} h_{z_{n}}^{*}\right)\right]=E\left[h_{z}^{*} I\left(h_{z}^{*}\right)\right] .
$$

Hint: Use (a) and almost repeat the proof of Lemma IV.5.3.

Solution 12.2

(a) From Lemma IV.5.2 we know that we can find a constant $C<\infty$ and $y_{0}>0$ such that

$$
-J^{\prime}(y)<C \frac{J(y)}{y} \quad \text { for } 0<y<y_{0}
$$

and hence for $\hat{C}=C / \mu$ we get

$$
-J^{\prime}(\mu y)<\hat{C} \frac{J(\mu y)}{y}
$$

Since J is convex and $\mu<1$, then $J(y) \geq J(\mu y)+J^{\prime}(\mu y)(y-\mu y)$, that means that $J(\mu y) \leq J(y)-J^{\prime}(\mu y) y(1-\mu)$, so that

$$
-J^{\prime}(\mu y)<\hat{C}\left(\frac{J(y)}{y}-J^{\prime}(\mu y)(1-\mu)\right)
$$

and hence after defying $\tilde{C}=\hat{C} / \mu$ we get

$$
-J^{\prime}(\mu y)<\tilde{C} \frac{J(y)}{y} \quad \text { for } 0<y<y_{0}
$$

(b) We first rewrite $h_{z_{n}}^{*} I\left(\mu_{n} h_{z_{n}}^{*}\right)=\mu_{n}^{-1}\left(\mu_{n} h_{z_{n}}^{*} I\left(\mu_{n} h_{z_{n}}^{*}\right)\right)$; so it suffices to show that

$$
\lim _{n \rightarrow \infty} E\left[\mu_{n} h_{z_{n}}^{*} I\left(\mu_{n} h_{z_{n}}^{*}\right)\right]=E\left[h_{z}^{*} I\left(h_{z}^{*}\right)\right] .
$$

We now argue as in the proof of Lemma IV.5.3.
First by Lemma IV.5.1 and continuity of $I \geq 0, \mu_{n} h_{z_{n}}^{*} I\left(\mu_{n} h_{z_{n}}^{*}\right) \rightarrow h_{z}^{*} I\left(h_{z}^{*}\right)$ in L^{0}. So we only need to prove uniform integrability.
I. This part is the same. Since I is decreasing and U is increasing, we get for $y \geq y_{0} \geq 0$ that

$$
0 \leq y I(y)=U(I(y))-J(y) \leq U\left(I\left(y_{0}\right)\right)+J^{-}(y)
$$

and therefore

$$
0 \leq X_{n}:=\mu_{n} h_{z_{n}}^{*} I\left(\mu_{n} h_{z_{n}}^{*}\right) \mathbb{1}_{\left\{\mu_{n} h_{z_{n}}^{*} \geq y_{0}\right\}} \leq\left|U\left(I\left(y_{0}\right)\right)\right|+J^{-}\left(\mu_{n} h_{z_{n}}^{*}\right)
$$

If $z_{n} \rightarrow z, \mu_{n} \rightarrow \mu$, then $\left(z_{n}\right)$ is bounded by some z^{\prime} and $\left(\mu_{n}\right)$ is bounded by some μ^{\prime}, say, and so all the $\mu_{n} h_{z_{n}}^{*}$ lie in $\mathcal{D}\left(\mu^{\prime} z^{\prime}\right)$. But we know from IV.3.3 that the family $\left\{J^{-}(h): h \in \mathcal{D}\left(\mu^{\prime} z^{\prime}\right)\right\}$ is uniformly integrable, and so also $\left(X_{n}\right)_{n \in \mathbb{N}}$ is uniformly integrable.
II. From (a) it follows that there exist $C<\infty$ and $y_{0}>0$ such that

$$
0 \leq \mu_{n} h_{z_{n}}^{*} I\left(\mu_{n} h_{z_{n}}^{*}\right) \mathbb{1}_{\left\{\mu_{n} h_{z_{n}}^{*}<y_{0}\right\}} \leq C\left|J\left(h_{z_{n}}^{*}\right)\right|,
$$

so it is enough to prove that $\left(\left|J\left(h_{z_{n}}^{*}\right)\right|\right)_{n \in \mathbb{N}}$ is uniformly integrable, but the fact that such a sequence is uniformly integrable is shown in the proof of Lemma IV.5.3.

Exercise 12.3 Consider a general market in finite discrete time with horizon $T \in \mathbb{N}$. Let $U:(0, \infty) \rightarrow \mathbb{R}$ be an increasing and concave utility function, and denote by u the indirect utility from maximizing the utility of final wealth, i.e.,

$$
u(x)=\sup _{\vartheta \in \Theta^{x}} E\left[U\left(x+G_{T}(\vartheta)\right)\right]
$$

for $x>0$, where $\Theta^{x}=\{\vartheta \in \Theta: \vartheta$ is x-admissible $\}$.
Suppose that U is strictly increasing, $U(\infty)<\infty$ and X satisfies NA. Show that if there exists an optimal strategy ϑ^{*} for x, then $u(x)<U(\infty)$.

Solution 12.3 Fix $x>0$. Let ϑ^{*} be an optimal strategy. Denote $A:=\left\{x+G_{T}\left(\vartheta^{*}\right)=\right.$ $\infty\}$. Since X satisfies NA, then $P(A)<1$. Then, since U is strictly increasing:

$$
u(x)=P[A] U(\infty)+E\left[I\left(A^{c}\right) U\left(x+G_{T}\left(\vartheta^{*}\right)\right)\right]<U(\infty)
$$

