Introduction to Mathematical Finance Exercise sheet 1

Please submit your solutions online until Wednesday 22:00, 28/02/2024.

Exercise 1.1 Let $\mathcal{C} := \mathbb{R} \times \mathbb{R}^K$ be the consumption space, \mathcal{D} the payoff matrix, e^i an endowment and π a price vector. Recall the budget set

 $B(e^{i},\pi) := \{ c \in \mathcal{C} : \exists \vartheta \in \mathbb{R}^{N} \text{ with } c_{0} \leq e_{0}^{i} - \vartheta \cdot \pi \text{ and } c_{T} \leq e_{T}^{i} + \mathcal{D}\vartheta \}.$

(a) For the statements

- 1. $c \in B(e^i, \pi)$,
- 2. $c e^i \in B(0, \pi)$,

3. $c - e^i$ is attainable from 0 initial wealth endowment,

show that $(1) \Leftrightarrow (2) \Leftarrow (3)$.

(b) Show by an example that $(2) \Rightarrow (3)$ is not true in general.

Solution 1.1

(a) By definition, $c \in B(e^i, \pi)$ if and only if there exists $\vartheta \in \mathbb{R}^N$ with $c_0 \leq e_0^i - \vartheta \cdot \pi$ and $c_T \leq e_T^i + \mathcal{D}\vartheta$, or more compactly $c \leq e^i + \bar{\mathcal{D}}\vartheta$. This is equivalent to $c - e^i \leq \bar{\mathcal{D}}\vartheta$ and hence to $c - e^i \in B(0, \pi)$.

If $c - e^i$ is attainable with 0 initial wealth endowment, there exists $\hat{\vartheta} \in \mathbb{R}^N$ such that $c_0 - e_0^i = -\hat{\vartheta} \cdot \pi$ and $c_T - e_T^i = \mathcal{D}\hat{\vartheta}$ (or more compactly $c - e^i = \bar{\mathcal{D}}\hat{\vartheta}$), which shows that $c - e^i \in B(0, \pi)$.

(b) The idea is simply to find a nonattainable consumption which still lies in the budget set. To do this, we consider a payoff matrix without full rank because otherwise every consumption is attainable. Let

$$\pi := \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \qquad \mathcal{D} := \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}.$$

Clearly $\mathcal{D}(\mathbb{R}^2) = \{(a, 2a)^{\text{tr}} : a \in \mathbb{R}\}$. Take for instance $c_0 = e_0^i - 1$, $\vartheta = (1, 0)^{\text{tr}}$, $c_T = e_T^i + (1, 1.5)^{\text{tr}}$. Then

$$c_0 - e_0^i = -1 \le -(1,0) \cdot (1,1),$$

$$c_T - e_T^i = \begin{pmatrix} 1\\ 1.5 \end{pmatrix} \le \begin{pmatrix} 1\\ 2 \end{pmatrix} = \begin{pmatrix} 1 & 2\\ 2 & 4 \end{pmatrix} \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

Thus, $c - e^i \in B(0, \pi)$. But clearly $(1, 1.5)^{\text{tr}} \notin \mathcal{D}(\mathbb{R}^2)$, which shows that $c - e^i$ is not attainable with 0 initial wealth endowment.

Updated: February 26, 2024

1/3

Exercise 1.2 Let \succeq be a preference order on C satisfying axioms (P1)-(P5). A function $\mathcal{U} : \mathcal{C} \to \mathbb{R}$ is called a *utility functional representing* \succeq or a numerical representation of \succeq if

$$c' \succeq c \iff \mathcal{U}(c') \ge \mathcal{U}(c).$$

(a) Show that all \mathcal{U} representing \succeq must be *quasiconcave*, i.e., for all $c, c' \in \mathcal{C}$ and $\lambda \in [0, 1]$,

$$\mathcal{U}(\lambda c + (1-\lambda)c') \ge \min{\{\mathcal{U}(c), \mathcal{U}(c')\}}.$$

- (b) Which axioms are needed for this result?
- (c) Show by a counterexample that a preference order can be represented by a utility functional which is not concave.

Solution 1.2

(a) Let c' and c be arbitrary elements of C. Without loss of generality, assume that $c' \succeq c$. Then by convexity, $\lambda c' + (1 - \lambda)c \succeq c$, and hence

$$\mathcal{U}(\lambda c' + (1-\lambda)c) \ge \mathcal{U}(c) = \min{\{\mathcal{U}(c), \mathcal{U}(c')\}}$$

- (b) In the solution above, we implicitly used completeness to assume $c' \succeq c$, and we used convexity and that $c \succeq c$.
- (c) Set $\mathbf{1} := (1, ..., 1)^{\text{tr}} \in \mathbb{R} \times \mathbb{R}^N$ and define

$$c' \succeq c \quad :\iff \quad c' \cdot \mathbf{1} \ge c \cdot \mathbf{1}.$$

It is easy to check that this satisfies the axioms (P1)-(P5). The natural utility functional is then given by

$$\mathcal{U}(c) = c \cdot \mathbf{1}.$$

However, since $\exp(\cdot)$ is increasing, it will preserve the order. Hence $\exp(\mathcal{U}(\cdot))$ is also a utility functional which represents \succeq , but it is not concave. More generally, exp can be replaced by any strictly increasing and non-concave function on \mathbb{R} .

Exercise 1.3

- (a) Construct a market with arbitrage of the first kind but with no arbitrage of the second kind.
- (b) Construct a market with arbitrage of the second kind but with no arbitrage of the first kind.
- (c) Find a sufficient condition under which existence of an arbitrage of the second kind implies the existence of an arbitrage of the first kind.

Solution 1.3

- (a) Consider a market consisting of a single asset with $\pi = 0$, $\mathcal{D} = (1, 2)^{\text{tr}}$. Set $\vartheta = 1$. Clearly, $\mathcal{D}\vartheta = (1, 2)^{\text{tr}} \ge 0$ and $\mathcal{D}\vartheta(\{\omega_i\}) > 0$ for both i = 1, 2. Thus ϑ is an arbitrage opportunity of the first kind. However, since $\pi = 0$, there exists no arbitrage of the second kind.
- (b) Consider the situation where $\pi = 1$ and $\mathcal{D} = (0, 0)$. Then $\vartheta < 0$ would be an arbitrage of the second kind. But since \mathcal{D} vanishes, we have for any $\tilde{\vartheta} \in \mathbb{R}$ that $\mathcal{D}\tilde{\vartheta} = (0, 0)^{\text{tr}}$. So there exists no arbitrage of the first kind.
- (c) Suppose for instance there is an asset $D^{\ell} \ge 0$ and $D^{\ell} \not\equiv 0$ and $\pi^{\ell} > 0$. Let ϑ be an arbitrage opportunity of the second kind. Set $\alpha = -\vartheta \cdot \pi/\pi^{\ell} > 0$. We consider a new strategy $\hat{\vartheta} = \vartheta + \alpha e_{\ell}$ where e_{ℓ} is the vector with 1 in its ℓ th component and 0 elsewhere. Then $\hat{\vartheta} \cdot \pi = \vartheta \cdot \pi + \alpha \cdot \pi^{\ell} = 0$ and $D\hat{\vartheta} = D\vartheta + \alpha D^{\ell} \ge 0$. Since $D\vartheta \ge 0$ and $\alpha D^{\ell} \ge 0$ with $\alpha D^{\ell} \not\equiv 0$, we have $D\hat{\vartheta} \ge 0$ and $D\hat{\vartheta} \not\equiv 0$. Hence, $\hat{\vartheta}$ is an arbitrage opportunity of the first kind.¹

¹This is just part of Proposition I.3.1.