Introduction to Mathematical Finance Exercise sheet 1

Please submit your solutions online until Wednesday 22:00, 28/02/2024.
Exercise 1.1 Let $\mathcal{C}:=\mathbb{R} \times \mathbb{R}^{K}$ be the consumption space, \mathcal{D} the payoff matrix, e^{i} an endowment and π a price vector. Recall the budget set

$$
B\left(e^{i}, \pi\right):=\left\{c \in \mathcal{C}: \exists \vartheta \in \mathbb{R}^{N} \text { with } c_{0} \leq e_{0}^{i}-\vartheta \cdot \pi \text { and } c_{T} \leq e_{T}^{i}+\mathcal{D} \vartheta\right\}
$$

(a) For the statements

1. $c \in B\left(e^{i}, \pi\right)$,
2. $c-e^{i} \in B(0, \pi)$,
3. $c-e^{i}$ is attainable from 0 initial wealth endowment,
show that $(1) \Leftrightarrow(2) \Leftarrow(3)$.
(b) Show by an example that $(2) \Rightarrow(3)$ is not true in general.

Solution 1.1

(a) By definition, $c \in B\left(e^{i}, \pi\right)$ if and only if there exists $\vartheta \in \mathbb{R}^{N}$ with $c_{0} \leq e_{0}^{i}-\vartheta \cdot \pi$ and $c_{T} \leq e_{T}^{i}+\mathcal{D} \vartheta$, or more compactly $c \leq e^{i}+\overline{\mathcal{D}} \vartheta$. This is equivalent to $c-e^{i} \leq \overline{\mathcal{D}} \vartheta$ and hence to $c-e^{i} \in B(0, \pi)$.
If $c-e^{i}$ is attainable with 0 initial wealth endowment, there exists $\hat{\vartheta} \in \mathbb{R}^{N}$ such that $c_{0}-e_{0}^{i}=-\hat{\vartheta} \cdot \pi$ and $c_{T}-e_{T}^{i}=\mathcal{D} \hat{\vartheta}$ (or more compactly $c-e^{i}=\overline{\mathcal{D}} \hat{\vartheta}$), which shows that $c-e^{i} \in B(0, \pi)$.
(b) The idea is simply to find a nonattainable consumption which still lies in the budget set. To do this, we consider a payoff matrix without full rank because otherwise every consumption is attainable. Let

$$
\pi:=\binom{1}{1}, \quad \mathcal{D}:=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)
$$

Clearly $\mathcal{D}\left(\mathbb{R}^{2}\right)=\left\{(a, 2 a)^{\operatorname{tr}}: a \in \mathbb{R}\right\}$. Take for instance $c_{0}=e_{0}^{i}-1, \vartheta=(1,0)^{\operatorname{tr}}$, $c_{T}=e_{T}^{i}+(1,1.5)^{\operatorname{tr}}$. Then

$$
\begin{gathered}
c_{0}-e_{0}^{i}=-1 \leq-(1,0) \cdot(1,1), \\
c_{T}-e_{T}^{i}=\binom{1}{1.5} \leq\binom{ 1}{2}=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)\binom{1}{0} .
\end{gathered}
$$

Thus, $c-e^{i} \in B(0, \pi)$. But clearly $(1,1.5)^{\operatorname{tr}} \notin \mathcal{D}\left(\mathbb{R}^{2}\right)$, which shows that $c-e^{i}$ is not attainable with 0 initial wealth endowment.

Exercise 1.2 Let \succeq be a preference order on \mathcal{C} satisfying axioms (P1)-(P5). A function $\mathcal{U}: \mathcal{C} \rightarrow \mathbb{R}$ is called a utility functional representing \succeq or a numerical representation of \succeq if

$$
c^{\prime} \succeq c \quad \Longleftrightarrow \quad \mathcal{U}\left(c^{\prime}\right) \geq \mathcal{U}(c)
$$

(a) Show that all \mathcal{U} representing \succeq must be quasiconcave, i.e., for all $c, c^{\prime} \in \mathcal{C}$ and $\lambda \in[0,1]$,

$$
\mathcal{U}\left(\lambda c+(1-\lambda) c^{\prime}\right) \geq \min \left\{\mathcal{U}(c), \mathcal{U}\left(c^{\prime}\right)\right\}
$$

(b) Which axioms are needed for this result?
(c) Show by a counterexample that a preference order can be represented by a utility functional which is not concave.

Solution 1.2

(a) Let c^{\prime} and c be arbitrary elements of \mathcal{C}. Without loss of generality, assume that $c^{\prime} \succeq c$. Then by convexity, $\lambda c^{\prime}+(1-\lambda) c \succeq c$, and hence

$$
\mathcal{U}\left(\lambda c^{\prime}+(1-\lambda) c\right) \geq \mathcal{U}(c)=\min \left\{\mathcal{U}(c), \mathcal{U}\left(c^{\prime}\right)\right\}
$$

(b) In the solution above, we implicitly used completeness to assume $c^{\prime} \succsim c$, and we used convexity and that $c \succeq c$.
(c) Set $1:=(1, \ldots, 1)^{\operatorname{tr}} \in \mathbb{R} \times \mathbb{R}^{N}$ and define

$$
c^{\prime} \succeq c \quad: \Longleftrightarrow \quad c^{\prime} \cdot \mathbf{1} \geq c \cdot \mathbf{1}
$$

It is easy to check that this satisfies the axioms (P1)-(P5). The natural utility functional is then given by

$$
\mathcal{U}(c)=c \cdot 1 .
$$

However, since $\exp (\cdot)$ is increasing, it will preserve the order. Hence $\exp (\mathcal{U}(\cdot))$ is also a utility functional which represents \succeq, but it is not concave. More generally, exp can be replaced by any strictly increasing and non-concave function on \mathbb{R}.

Exercise 1.3

(a) Construct a market with arbitrage of the first kind but with no arbitrage of the second kind.
(b) Construct a market with arbitrage of the second kind but with no arbitrage of the first kind.
(c) Find a sufficient condition under which existence of an arbitrage of the second kind implies the existence of an arbitrage of the first kind.

Solution 1.3

(a) Consider a market consisting of a single asset with $\pi=0, \mathcal{D}=(1,2)^{\operatorname{tr}}$. Set $\vartheta=1$. Clearly, $\mathcal{D} \vartheta=(1,2)^{\operatorname{tr}} \geq 0$ and $\mathcal{D} \vartheta\left(\left\{\omega_{i}\right\}\right)>0$ for both $i=1,2$. Thus ϑ is an arbitrage opportunity of the first kind. However, since $\pi=0$, there exists no arbitrage of the second kind.
(b) Consider the situation where $\pi=1$ and $\mathcal{D}=(0,0)$. Then $\vartheta<0$ would be an arbitrage of the second kind. But since \mathcal{D} vanishes, we have for any $\tilde{\vartheta} \in \mathbb{R}$ that $\mathcal{D} \tilde{\vartheta}=(0,0)^{\mathrm{tr}}$. So there exists no arbitrage of the first kind.
(c) Suppose for instance there is an asset $D^{\ell} \geq 0$ and $D^{\ell} \not \equiv 0$ and $\pi^{\ell}>0$. Let ϑ be an arbitrage opportunity of the second kind. Set $\alpha=-\vartheta \cdot \pi / \pi^{\ell}>0$. We consider a new strategy $\hat{\vartheta}=\vartheta+\alpha e_{\ell}$ where e_{ℓ} is the vector with 1 in its ℓ th component and 0 elsewhere. Then $\hat{\vartheta} \cdot \pi=\vartheta \cdot \pi+\alpha \cdot \pi^{\ell}=0$ and $\mathcal{D} \hat{\vartheta}=\mathcal{D} \vartheta+\alpha \mathcal{D}^{\ell} \geq 0$. Since $\mathcal{D} \vartheta \geq 0$ and $\alpha \mathcal{D}^{\ell} \geq 0$ with $\alpha \mathcal{D}^{\ell} \not \equiv 0$, we have $\mathcal{D} \hat{\vartheta} \geq 0$ and $\mathcal{D} \hat{\vartheta} \not \equiv 0$. Hence, $\hat{\vartheta}$ is an arbitrage opportunity of the first kind 1

[^0]
[^0]: ${ }^{1}$ This is just part of Proposition I.3.1.

