Introduction to Mathematical Finance Exercise sheet 2

Please submit your solutions online until Wednesday 22:00, 06/03/2024.

Exercise 2.1 Denote by \mathcal{P} the collection of all EMMs and denote by $|\mathcal{P}|$ the cardinality of \mathcal{P} . Prove or disprove:

Completeness $\iff |\mathcal{P}| \leq 1.$

Exercise 2.2 Let D^0 be a numéraire, and define

 $\Psi^{Q}(c) = c_{0} + E_{Q} \left[\frac{c_{T}}{D^{0}} \right] \quad \text{for } c \in \mathcal{C},$ $Q^{\Psi}[A] = \Psi(0, D^{0} \mathbb{1}_{A}) \quad \text{for } A \in \mathcal{F}.$

Here Q is a probability measure on \mathcal{F} , and Ψ is a linear functional in \mathcal{C} . Denote by J the mapping : $Q \mapsto J(Q) := \Psi^Q$. If Ψ is a consistent price system, check that $J(\hat{Q}) = \hat{\Psi}$.

Exercise 2.3 Consider the one-step *binomial market* defined by

$$\pi = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $\mathcal{D} = \begin{pmatrix} 1+r & 1+u \\ 1+r & 1+d \end{pmatrix}$

for some r > -1 and u > d.

- (a) Show that this market is free of arbitrage if and only if u > r > d,
- (b) Construct an arbitrage opportunity for a market where u = r > d.