## Introduction to Mathematical Finance Exercise sheet 2

Please submit your solutions online until Wednesday 22:00, 06/03/2024.
Exercise 2.1 Denote by $\mathcal{P}$ the collection of all EMMs and denote by $|\mathcal{P}|$ the cardinality of $\mathcal{P}$. Prove or disprove:

$$
\text { Completeness } \Longleftrightarrow|\mathcal{P}| \leq 1
$$

Exercise 2.2 Let $D^{0}$ be a numéraire, and define

$$
\begin{aligned}
& \Psi^{Q}(c)=c_{0}+E_{Q}\left[\frac{c_{T}}{D^{0}}\right] \quad \text { for } c \in \mathcal{C}, \\
& Q^{\Psi}[A]=\Psi\left(0, D^{0} \mathbb{1}_{A}\right) \quad \text { for } A \in \mathcal{F} .
\end{aligned}
$$

Here $Q$ is a probability measure on $\mathcal{F}$, and $\Psi$ is a linear functional in $\mathcal{C}$. Denote by $J$ the mapping : $Q \mapsto J(Q):=\Psi^{Q}$. If $\Psi$ is a consistent price system, check that $J(\hat{Q})=\hat{\Psi}$.

Exercise 2.3 Consider the one-step binomial market defined by

$$
\pi=\binom{1}{1} \quad \text { and } \quad \mathcal{D}=\left(\begin{array}{ll}
1+r & 1+u \\
1+r & 1+d
\end{array}\right)
$$

for some $r>-1$ and $u>d$.
(a) Show that this market is free of arbitrage if and only if $u>r>d$,
(b) Construct an arbitrage opportunity for a market where $u=r>d$.

