Introduction to Mathematical Finance Exercise sheet 2

Please submit your solutions online until Wednesday 22:00, 06/03/2024.
Exercise 2.1 Denote by \mathcal{P} the collection of all EMMs and denote by $|\mathcal{P}|$ the cardinality of \mathcal{P}. Prove or disprove:

$$
\text { Completeness } \Longleftrightarrow|\mathcal{P}| \leq 1
$$

Solution 2.1 " \Longrightarrow " Suppose the market is complete. Then either the market is free of arbitrage or not. In the first case $|\mathcal{P}|=1$. In the second case $|\mathcal{P}|=0$.
" $\Longleftarrow "$ This is not true in general: if $|\mathcal{P}|=1$, then the market is arbitrage-free and complete by Theorems I.4.3 and I.4.5.

If $|\mathcal{P}|=0$, then the market has arbitrage. If we choose \mathcal{D} such that $\operatorname{rank}(\mathcal{D})<K$, then the market is incomplete.

Exercise 2.2 Let D^{0} be a numéraire, and define

$$
\begin{aligned}
& \Psi^{Q}(c)=c_{0}+E_{Q}\left[\frac{c_{T}}{D^{0}}\right] \quad \text { for } c \in \mathcal{C} \\
& Q^{\Psi}[A]=\Psi\left(0, D^{0} \mathbb{1}_{A}\right) \quad \text { for } A \in \mathcal{F}
\end{aligned}
$$

Here Q is a probability measure on \mathcal{F}, and Ψ is a linear functional in \mathcal{C}. Denote by J the mapping : $Q \mapsto J(Q):=\Psi^{Q}$. If Ψ is a consistent price system, check that $J(\hat{Q})=\hat{\Psi}$.

Solution 2.2 In the following calculation we use first the definitions of J and Q^{Ψ}, and finally the linearity of Ψ to compute:

$$
\begin{aligned}
J\left(Q^{\Psi}\right)(c) & =c_{0}+\sum_{k=1}^{K} Q^{\Psi}\left[\left\{\omega_{k}\right\}\right] \frac{c_{T}\left(\omega_{k}\right)}{D^{0}\left(\omega_{k}\right)} \\
& =c_{0}+\sum_{k=1}^{K} \Psi\left(0, D^{0}\left(\omega_{k}\right) \mathbb{1}_{\left\{\omega_{k}\right\}}\right) \frac{c_{T}\left(\omega_{k}\right)}{D^{0}\left(\omega_{k}\right)} \\
& =c_{0} \Psi(1, \underline{0})+\sum_{k=1}^{K} \Psi\left(0, c_{T}\left(\omega_{k}\right) \mathbb{1}_{\left\{\omega_{k}\right\}}\right)=\Psi(c) .
\end{aligned}
$$

Exercise 2.3 Consider the one-step binomial market defined by

$$
\pi=\binom{1}{1} \quad \text { and } \quad \mathcal{D}=\left(\begin{array}{ll}
1+r & 1+u \\
1+r & 1+d
\end{array}\right)
$$

for some $r>-1$ and $u>d$.
(a) Show that this market is free of arbitrage if and only if $u>r>d$,
(b) Construct an arbitrage opportunity for a market where $u=r>d$.

Solution 2.3

(a) The market is arbitrage-free if and only if there exists a probability measure $Q=\left(q_{u}, q_{d}\right)$ such that

$$
1=E_{Q}\left[\frac{D^{1}}{D^{0}}\right]=q_{u} \frac{1+u}{1+r}+q_{d} \frac{1+d}{1+r}
$$

where q_{u} and q_{d} are positive and $q_{u}+q_{d}=1$. These equalities are equivalent to

$$
q_{u}=\frac{r-d}{u-d} \quad \text { and } \quad q_{d}=\frac{u-r}{u-d}
$$

Both q_{u} and q_{d} are positive if and only if $r \in(d, u)$.
(b) If $u=r$, the risky asset can only lose value relative to the risk-free asset. An arbitrage of the first kind is therefore given by ("go long risk-free asset and short risky asset")

$$
\vartheta=\binom{1}{-1}
$$

This strategy costs $\vartheta \cdot \pi=0$ at time 0 and yields

$$
\mathcal{D} \vartheta=\binom{r-u}{r-d}=\binom{0}{r-d}
$$

at time T.

