Introduction to Mathematical Finance Exercise sheet 3

Please submit your solutions online until Wednesday 22:00, 13/03/2024.
Exercise 3.1 For a market (\mathcal{D}, π) with a numéraire D^{0}, a martingale measure for numéraire D^{0} is a probability measure \mathbb{Q} on \mathcal{F} with $E_{\mathbb{Q}}\left[\frac{D^{l}}{D^{0}}\right]=\pi^{l}$ for $l=0,1, \ldots, N$. We call \mathbb{Q} equivalent to \mathbb{P} if $\mathbb{Q}\left[\left\{\omega_{k}\right\}\right]>0$ for $k=1, \ldots, K$, and absolutely continuous with respect to P if $Q\left[\left\{\omega_{k}\right\}\right] \geq 0$ for $k=1, \ldots, K$. Denote by \mathcal{P} (resp. \mathcal{P}_{a}) the set of all equivalent (resp. absolutely continuous) martingale measures for the numéraire D^{0}. Consider an arbitrage-free market with numéraire D^{0}.
(a) Show that $\mathcal{P}_{a}=\overline{\mathcal{P}}$. Here we identity \mathcal{P} with a subset of \mathbb{R}_{+}^{N} and denote by ${ }^{-}$ the closure in \mathbb{R}^{N}.
(b) Use (a) to show that for any random variable X,

$$
\sup _{\mathbb{Q} \in \mathcal{P}} E_{\mathbb{Q}}[X]=\sup _{\mathbb{Q} \in \mathcal{P}_{a}} E_{\mathbb{Q}}[X] .
$$

(c) Show that for any payoff H, the supremum

$$
\sup _{\mathbb{Q} \in \mathcal{P}_{a}} E_{\mathbb{Q}}\left[\frac{H}{D^{0}}\right]
$$

is attained in some $\mathbb{Q} \in \mathcal{P}_{a}$. Does this imply that the market is complete?

Exercise 3.2 Let

$$
\pi=\binom{1}{1100} \quad \text { and } \quad \mathcal{D}=\left(\begin{array}{cc}
1.1 & 1320 \\
1.1 & 1210 \\
1.1 & 880
\end{array}\right)
$$

Denote by H the payoff of a put option with strike $K=900$, i.e.

$$
H=\left(900-D^{1}\right)^{+}=\left(\begin{array}{c}
0 \\
0 \\
20
\end{array}\right)
$$

(a) Find

$$
\sup _{\mathbb{Q} \in \mathcal{P}} E_{\mathbb{Q}}\left[\frac{H}{D^{0}}\right] .
$$

(b) Compute

$$
\inf \{\pi \cdot \vartheta: \vartheta \text { with } \mathcal{D} \vartheta \geq H\}
$$

(c) Construct a market with $\mathcal{P}_{a} \neq \overline{\mathcal{P}}$.

Exercise 3.3 Consider the one-step trinomial model described by

$$
\pi=\binom{1}{1} \quad \text { and } \quad \mathcal{D}=\left(\begin{array}{ll}
1+r & 1+u \\
1+r & 1+m \\
1+r & 1+d
\end{array}\right)
$$

for some $r>-1$ and u, m, d with $u>m>d$ and $u>r>d$.
(a) Show that $\mathcal{P} \neq \emptyset$.
(b) Describe the set \mathcal{P}.

Hint: Use the \mathbb{Q}-probability of the 'middle outcome' as a parameter in a parametrization of \mathcal{P} as a line segment in \mathbb{R}^{3}.
(c) Denote by \mathcal{P}_{a} the set of all martingale measures \mathbb{Q} which are absolutely continuous with respect to \mathbb{P}. An element $\mathbb{R} \in \mathcal{P}_{a}$ is an extreme point if \mathbb{R} cannot be written as a strict convex combination of elements in \mathcal{P}_{a}, i.e. the condition $\mathbb{R}=\lambda \mathbb{Q}+(1-\lambda) \mathbb{Q}^{\prime}$ with $0<\lambda<1$ and both $\mathbb{Q}, \mathbb{Q}^{\prime} \in \mathcal{P}_{a}$ implies that $\mathbb{Q}=\mathbb{Q}^{\prime}$. Find the extreme points of \mathcal{P}_{a} and represent any element of \mathcal{P} by writing it as a (strict) convex combination of such extreme points. Verify that this coincides with the answer found in (b).

