Introduction to Mathematical Finance Exercise sheet 3

Please submit your solutions online until Wednesday 22:00, 13/03/2024.

Exercise 3.1 For a market (\mathcal{D}, π) with a numéraire D^0 , a martingale measure for numéraire D^0 is a probability measure \mathbb{Q} on \mathcal{F} with $E_{\mathbb{Q}}[\frac{D^l}{D^0}] = \pi^l$ for l = 0, 1, ..., N. We call \mathbb{Q} equivalent to \mathbb{P} if $\mathbb{Q}[\{\omega_k\}] > 0$ for k = 1, ..., K, and absolutely continuous with respect to P if $Q[\{\omega_k\}] \ge 0$ for k = 1, ..., K. Denote by \mathcal{P} (resp. \mathcal{P}_a) the set of all equivalent (resp. absolutely continuous) martingale measures for the numéraire D^0 . Consider an arbitrage-free market with numéraire D^0 .

- (a) Show that $\mathcal{P}_a = \overline{\mathcal{P}}$. Here we identity \mathcal{P} with a subset of \mathbb{R}^N_+ and denote by $\overline{}$ the closure in \mathbb{R}^N .
- (b) Use (a) to show that for any random variable X,

$$\sup_{\mathbb{Q}\in\mathcal{P}} E_{\mathbb{Q}}[X] = \sup_{\mathbb{Q}\in\mathcal{P}_a} E_{\mathbb{Q}}[X].$$

(c) Show that for any payoff H, the supremum

$$\sup_{\mathbb{Q}\in\mathcal{P}_a} E_{\mathbb{Q}}\left[\frac{H}{D^0}\right]$$

is attained in some $\mathbb{Q} \in \mathcal{P}_a$. Does this imply that the market is complete?

Exercise 3.2 Let

$$\pi = \begin{pmatrix} 1\\ 1100 \end{pmatrix} \text{ and } \mathcal{D} = \begin{pmatrix} 1.1 & 1320\\ 1.1 & 1210\\ 1.1 & 880 \end{pmatrix}.$$

Denote by H the payoff of a put option with strike K = 900, i.e.

$$H = (900 - D^1)^+ = \begin{pmatrix} 0\\0\\20 \end{pmatrix}.$$

(a) Find

$$\sup_{\mathbb{Q}\in\mathcal{P}} E_{\mathbb{Q}}\left[\frac{H}{D^0}\right].$$

(b) Compute

$$\inf\{\pi \cdot \vartheta : \vartheta \text{ with } \mathcal{D}\vartheta \ge H\}.$$

Updated: March 7, 2024

1 / 2

(c) Construct a market with $\mathcal{P}_a \neq \overline{\mathcal{P}}$.

Exercise 3.3 Consider the one-step trinomial model described by

$$\pi = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $\mathcal{D} = \begin{pmatrix} 1+r & 1+u \\ 1+r & 1+m \\ 1+r & 1+d \end{pmatrix}$,

for some r > -1 and u, m, d with u > m > d and u > r > d.

- (a) Show that $\mathcal{P} \neq \emptyset$.
- (b) Describe the set \mathcal{P} .

Hint: Use the \mathbb{Q} -probability of the 'middle outcome' as a parameter in a parametrization of \mathcal{P} as a line segment in \mathbb{R}^3 .

(c) Denote by \mathcal{P}_a the set of all martingale measures \mathbb{Q} which are absolutely continuous with respect to \mathbb{P} . An element $\mathbb{R} \in \mathcal{P}_a$ is an *extreme point* if \mathbb{R} cannot be written as a strict convex combination of elements in \mathcal{P}_a , i.e. the condition $\mathbb{R} = \lambda \mathbb{Q} + (1 - \lambda) \mathbb{Q}'$ with $0 < \lambda < 1$ and both $\mathbb{Q}, \mathbb{Q}' \in \mathcal{P}_a$ implies that $\mathbb{Q} = \mathbb{Q}'$. Find the extreme points of \mathcal{P}_a and represent any element of \mathcal{P} by writing it as a (strict) convex combination of such extreme points. Verify that this coincides with the answer found in (b).