Introduction to Mathematical Finance Exercise sheet 3

Please submit your solutions online until Wednesday 22:00, 13/03/2024.

Exercise 3.1 For a market (\mathcal{D}, π) with a numéraire D^0 , a martingale measure for numéraire D^0 is a probability measure \mathbb{Q} on \mathcal{F} with $E_{\mathbb{Q}}[\frac{D^l}{D^0}] = \pi^l$ for l = 0, 1, ..., N. We call \mathbb{Q} equivalent to \mathbb{P} if $\mathbb{Q}[\{\omega_k\}] > 0$ for k = 1, ..., K, and absolutely continuous with respect to P if $Q[\{\omega_k\}] \ge 0$ for k = 1, ..., K. Denote by \mathcal{P} (resp. \mathcal{P}_a) the set of all equivalent (resp. absolutely continuous) martingale measures for the numéraire D^0 . Consider an arbitrage-free market with numéraire D^0 .

- (a) Show that $\mathcal{P}_a = \overline{\mathcal{P}}$. Here we identity \mathcal{P} with a subset of \mathbb{R}^N_+ and denote by $\overline{}$ the closure in \mathbb{R}^N .
- (b) Use (a) to show that for any random variable X,

$$\sup_{\mathbb{Q}\in\mathcal{P}} E_{\mathbb{Q}}[X] = \sup_{\mathbb{Q}\in\mathcal{P}_a} E_{\mathbb{Q}}[X].$$

(c) Show that for any payoff H, the supremum

$$\sup_{\mathbb{Q}\in\mathcal{P}_a} E_{\mathbb{Q}}\left[\frac{H}{D^0}\right]$$

is attained in some $\mathbb{Q} \in \mathcal{P}_a$. Does this imply that the market is complete?

Solution 3.1

- (a) Let $R \in \mathbb{P}_a$, $Q \in \mathbb{P}$ and define $Q_{\epsilon} = \epsilon Q + (1 \epsilon)R$ for $\epsilon \in (0, 1]$. Then since $Q_{\epsilon} \in \mathbb{P}$ and $Q_{\epsilon} \to R$ as $\epsilon \searrow 0$, R is the limit of a sequence in \mathbb{P} . Since R is arbitrary, we conclude that $\overline{\mathbb{P}} = \mathbb{P}_a$.
- (b) Since $\overline{\mathbb{P}} = \mathbb{P}_a$, the inequality $\sup_{Q \in \mathbb{P}} E_Q[X] \leq \sup_{Q \in \mathbb{P}_a} E_Q[X]$ is trivial.

Since \mathbb{P} is a bounded subset of \mathbb{R}^K , the set $\mathbb{P}_a = \overline{\mathbb{P}}$ is compact and the mapping $Q \mapsto E_Q[X]$ is linear, hence continuous, there exists an element $Q^* \in \operatorname{argmax}_{Q \in \mathbb{P}_a} E_Q[X]$. Let Q be an arbitrary element in \mathbb{P} and construct $Q^{\epsilon} = \epsilon Q + (1 - \epsilon)Q^*$. Then $Q^{\epsilon} \in \mathbb{P}$ for all $\epsilon \in (0, 1]$ by construction, and

$$\lim_{\epsilon \searrow 0} E_{Q^{\epsilon}}[X] = \lim_{\epsilon \searrow 0} \left(\epsilon E_Q[X] + (1 - \epsilon) E_{Q^*}[X] \right) = E_{Q^*}[X].$$

From the last equality, it follows that

$$\sup_{Q \in \mathbb{P}} E_Q[X] \ge \lim_{\epsilon \searrow 0} E_{Q^{\epsilon}}[X] \ge \sup_{Q \in \mathbb{P}_a} E_Q[X]$$

Updated: March 13, 2024

1 / 7

(c) Since the set \mathbb{P}_a is compact and the mapping $Q \mapsto E_Q[\frac{H}{D^0}]$ is continuous, the supremum is in fact a maximum, hence attained.

However, this does not imply that H is attainable. If it did, then any arbitrage-free market would be complete, since H is arbitrary.

Exercise 3.2 Let

$$\pi = \begin{pmatrix} 1\\1100 \end{pmatrix} \text{ and } \mathcal{D} = \begin{pmatrix} 1.1 & 1320\\1.1 & 1210\\1.1 & 880 \end{pmatrix}$$

Denote by H the payoff of a put option with strike K = 900, i.e.

$$H = (900 - D^1)^+ = \begin{pmatrix} 0\\0\\20 \end{pmatrix}.$$

(a) Find

$$\sup_{\mathbb{Q}\in\mathcal{P}} E_{\mathbb{Q}}\left[\frac{H}{D^0}\right].$$

(b) Compute

•

$$\inf\{\pi \cdot \vartheta : \vartheta \text{ with } \mathcal{D}\vartheta \ge H\}.$$

(c) Construct a market with $\mathcal{P}_a \neq \overline{\mathcal{P}}$.

Solution 3.2 Note that \mathcal{D} is of the form

$$\mathcal{D} = \begin{pmatrix} \pi^0(1+r) & \pi^1(1+u) \\ \pi^0(1+r) & \pi^1(1+m) \\ \pi^0(1+r) & \pi^1(1+d) \end{pmatrix},$$

with r = 0.1, u = 0.2, m = 0.1 and d = -0.2.

(a) From Exercise 3.2, we know that

$$\mathbb{P} = \left\{ \left(\frac{(r-d) - (m-d)\lambda}{u-d}, \lambda, \frac{(u-r) - (u-m)\lambda}{u-d} \right) : \\ \lambda \in \left(0, \min\left\{ \frac{r-d}{m-d}, \frac{u-r}{u-m} \right\} \right) \right\}.$$

Since the expectation only depends on q_d , which is decreasing in λ , we find the supremum by setting $\lambda = 0$ to obtain

$$\frac{20}{1.1}\frac{1}{4} = \frac{5}{1.1}.$$

(b) Writing down the condition $\mathcal{D}\vartheta \geq H$, we obtain the optimization problem

$$\begin{array}{ll} \min & \vartheta^0 + \pi^1 \vartheta^1 \\ \text{s.t.} & 11 \vartheta^0 + 12 \pi^1 \vartheta^1 \geq 0, \\ & \vartheta^0 + \pi^1 \vartheta^1 \geq 0, \\ & 11 \vartheta^0 + 8 \pi^1 \vartheta^1 \geq 10 H_3 = 200. \end{array}$$

Updated: March 13, 2024

$$\vartheta^s = \begin{pmatrix} \frac{30}{11} \\ -\frac{5}{2\pi^1} \end{pmatrix} H_3$$

is a solution to the optimization problem, and $\pi \cdot \vartheta^s = \frac{5}{1.1}$.

(c) Consider a market

$$\pi = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $\mathcal{D} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$.

The only measure Q satisfying the martingale property is identified by $q = (0, 1)^{tr}$, and is not equivalent to P.

Exercise 3.3 Consider the one-step trinomial model described by

$$\pi = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $\mathcal{D} = \begin{pmatrix} 1+r & 1+u \\ 1+r & 1+m \\ 1+r & 1+d \end{pmatrix}$,

for some r > -1 and u, m, d with u > m > d and u > r > d.

- (a) Show that $\mathcal{P} \neq \emptyset$.
- (b) Describe the set \mathcal{P} .

Hint: Use the \mathbb{Q} -probability of the 'middle outcome' as a parameter in a parametrization of \mathcal{P} as a line segment in \mathbb{R}^3 .

(c) Denote by \mathcal{P}_a the set of all martingale measures \mathbb{Q} which are absolutely continuous with respect to \mathbb{P} . An element $\mathbb{R} \in \mathcal{P}_a$ is an *extreme point* if \mathbb{R} cannot be written as a strict convex combination of elements in \mathcal{P}_a , i.e. the condition $\mathbb{R} = \lambda \mathbb{Q} + (1 - \lambda) \mathbb{Q}'$ with $0 < \lambda < 1$ and both $\mathbb{Q}, \mathbb{Q}' \in \mathcal{P}_a$ implies that $\mathbb{Q} = \mathbb{Q}'$. Find the extreme points of \mathcal{P}_a and represent any element of \mathcal{P} by writing it as a (strict) convex combination of such extreme points. Verify that this coincides with the answer found in (b).

Solution 3.3

(a) Any $Q \in \mathbb{P}$ can be identified with a vector $q \in \mathbb{R}^3_{++}$ satisfying $\mathcal{D}^{tr}q = (1+r)\pi$. This is a system of 2 equations

$$(1+r)(q_1+q_2+q_3) = 1+r,$$

 $(1+u)q_1 + (1+m)q_2 + (1+d)q_3 = 1+r,$

which reduces to

$$q_1 + q_2 + q_3 = 1$$
, $uq_1 + mq_2 + dq_3 = r$.

As u>m>d, this can be solved with $q \in \mathbb{R}^3_{++}$ if and only if r is a strict convex combination of u, m and d, which is equivalent to u > r > d because m is already a strict convex combination of u and d.

(b) Let Q be any probability measure on \mathcal{F} and $q_i = Q[\{\omega_i\}]$ for $i \in \{u, m, d\}$. Now write down the conditions on q_i ; they are

$$1 = \pi^{1} = E_{Q} \left[\frac{D^{1}}{D^{0}} \right],$$

$$= \frac{(1+u)q_{u} + (1+m)q_{m} + (1+d)q_{d}}{1+r},$$
(1)

$$1 = q_u + q_m + q_d, \tag{2}$$

$$q_i \in (0,1), \quad i \in \{u, m, d\}.$$
 (3)

Updated: March 13, 2024

5 / 7

Condition (1) follows from the martingale property, condition (2) follows from $Q[\Omega] = 1$, and condition (3) follows from $Q \approx P$. As suggested in the hint, we parametrize this set by choosing $q_m = \lambda$. Using the two equations then yields

$$q_u = \frac{(r-d) - (m-d)\lambda}{u-d},$$
$$q_d = \frac{(u-r) - (u-m)\lambda}{u-d}.$$

Now we just have to restrict λ according to the third condition. This amounts to choosing λ such that

$$q_m \in (0,1) \Leftrightarrow \lambda \in (0,1),$$

$$q_u \in (0,1) \Leftrightarrow \lambda \in \left(0, \frac{r-d}{m-d}\right),$$

$$q_d \in (0,1) \Leftrightarrow \lambda \in \left(0, \frac{u-r}{u-m}\right).$$

Since u > m > d and u > r > d, this reduces to

$$\lambda \in \left(0, \min\left\{\frac{r-d}{m-d}, \frac{u-r}{u-m}\right\}\right).$$

Hence the identification of $\mathbb P$ as a subset of $[0,1]^3$ is given by

$$\mathbb{P} = \left\{ \left(\frac{(r-d) - (m-d)\lambda}{u-d}, \lambda, \frac{(u-r) - (u-m)\lambda}{u-d} \right) : \\ \lambda \in \left(0, \min\left\{ \frac{r-d}{m-d}, \frac{u-r}{u-m} \right\} \right) \right\}.$$

(c) The extreme points can be found in two ways. First, one could calculate \mathbb{P}_a explicitly to obtain the closure of \mathbb{P} found above and setting the parameter λ to its smallest and largest values. More precisely,

$$\mathbb{P}_{a} = \left\{ \left(\frac{(r-d) - (m-d)\lambda}{u-d}, \lambda, \frac{(u-r) - (u-m)\lambda}{u-d} \right) : \\ \lambda \in \left[0, \min\left\{ \frac{r-d}{m-d}, \frac{u-r}{u-m} \right\} \right] \right\}.$$

Alternatively, since \mathbb{P}_a is the intersection of the two planes given by (2) and (1) in the closed, positive orthant of \mathbb{R}^3 , the extreme points lie on the boundary of this orthant. Therefore, one could find solutions to (1) and (2) with $q_i \ge 0$ for all $i \in \{u, m, d\}$ and $q_i = 0$ for at least one $i \in \{u, m, d\}$. These points are given by

$$Q_1 = \left(\frac{r-d}{u-d}, 0, \frac{u-r}{u-d}\right) \quad \text{and} \quad Q_2 = \begin{cases} \left(0, \frac{r-d}{m-d}, \frac{m-r}{m-d}\right) & \text{if } m \ge r, \\ \left(\frac{r-m}{u-m}, \frac{u-r}{u-m}, 0\right) & \text{if } m < r. \end{cases}$$

Updated: March 13, 2024

Therefore,

$$\mathbb{P} = \{(1-\alpha)Q_1 + \alpha Q_2 : \alpha \in (0,1)\}.$$

We verify for $m \ge r$. The other case works analogously. For these parameters,

$$\lambda \in \left(0, \frac{r-d}{m-d}\right)$$

Let $\alpha = \lambda \frac{m-d}{r-d}$. Then $\alpha \in (0,1)$ and any element in \mathbb{P} is given by

$$(1-\alpha)Q_1 + \alpha Q_2 = \left(\frac{(r-d) - (r-d)\alpha}{u-d}, \frac{r-d}{m-d}\alpha, \frac{(u-r) - (u-r)\alpha}{u-d} + \frac{m-r}{m-d}\alpha\right)$$
$$= \left(\frac{(r-d) - (m-d)\lambda}{u-d}, \lambda, \frac{u-r}{u-d} + \underbrace{\left(\frac{m-r}{m-d} - \frac{u-r}{u-d}\right)}_{-\frac{u-m}{u-d}\frac{r-d}{m-d}}\alpha\right)$$
$$= \left(\frac{(r-d) - (m-d)\lambda}{u-d}, \lambda, \frac{u-r - (u-m)\lambda}{u-d}\right),$$

which is of the same form as in the previous exercise.

Note: When $m \neq r$, Q_1 and Q_2 are both EMMs for the binomial markets obtained when one of the three points is removed.