Introduction to Mathematical Finance Exercise sheet 5

Please submit your solutions online until Wednesday 10pm, 27/03/2024.

Exercise 5.1 Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathcal{F} = \sigma(A_1, \ldots, A_n)$, where $\bigcup_{i=1}^n A_i = \Omega$ and $A_i \cap A_j = \emptyset$ for $i \neq j$. A probability measure \mathbb{Q} on \mathcal{F} is called absolutely continuous with respect to \mathbb{P} if for any $A \in \mathcal{F}$, $\mathbb{P}[A] = 0$ implies that $\mathbb{Q}[A] = 0$.

(a) Show directly, without using the Radon–Nikodym theorem, that \mathbb{Q} is absolutely continuous with respect to \mathbb{P} if and only if there exists a random variable $\xi \geq 0$ with $E^{\mathbb{P}}[\xi] = 1$ and

$$\mathbb{Q}[A] = \int_A \xi d\mathbb{P}$$
 for all $A \in \mathcal{F}$.

(b) Two probability measures \mathbb{Q} and \mathbb{P} on \mathcal{F} are equivalent on \mathcal{F} if for any $A \in \mathcal{F}$, we have $\mathbb{Q}[A] = 0$ if and only if $\mathbb{P}[A] = 0$. Construct an example where \mathbb{Q} is absolutely continuous with respect to \mathbb{P} , but \mathbb{Q} and \mathbb{P} are not equivalent.

Solution 5.1

(a) Consider first Q defined by $Q[A] = \int_A \xi dP$ for $A \in \mathcal{F}$. From the definition of \mathcal{F} it follows that any set $A \in \mathcal{F}$ is of the form $A = \bigcup_{j \in J} A_j$, where $J \subseteq \{1, ..., n\}$. So that for any $A \in \mathcal{F} Q[A] = \sum_{j \in J} Q[A_j]$. From $\xi \ge 0$ and $E^P[\xi] = 1$ it is clear that Q is a probability measure on \mathcal{F} . Since ξ is a random variable on (Ω, \mathcal{F}) , it is of the form $\xi = \sum_{i=1}^n c_i I_{A_i}$ for some $c_i \ge 0$. Since for any $A \in \mathcal{F} Q[A] = \sum_{j \in J} Q[A_j] = \sum_{j \in J} c_j P[A_j]$ and $P[A] = \sum_{j \in J} P[A_j]$, then P[A] = 0 implies that Q[A] = 0, so that Q is absolutely continuous with respect to P on \mathcal{F} .

Now suppose that Q is absolutely continuous with respect to P on \mathcal{F} . For $i \in \{1, \ldots, n\}$ if $P[A_i] = 0$ define $c_i := 0$ and otherwise $c_i := \frac{Q[A_i]}{P[A_i]}$. Then $\xi := \sum c_i I_{A_i}$ is clearly ≥ 0 , and the construction of ξ implies that $E^P[\xi] = \sum c_i P[A_i] = \sum Q[A_i] = 1$ and $Q[A_i] = \int_{A_i} \xi dP$.

(b) Consider $\mathcal{F} = \sigma(A_1, A_2)$, with $A_1 \cup A_2 = \Omega$ and $A_1 \cap A_2 = \emptyset$. Consider the probability measures Q and P defined by $Q[A_1] = 1, Q[A_2] = 0$ and $P[A_1] = P[A_2] = 1/2$. Then it is clear that Q is absolutely continuous with respect to P, but P and Q are not equivalent. **Exercise 5.2** Let $\psi = (V_0, \vartheta)$ be a self-financing strategy in a multi-period market with discounted asset prices. Assume that $V_T(\psi) \ge -a$ *P*-a.s. for some $a \ge 0$.

- (a) Show that if the market is arbitrage-free, then ψ is *a*-admissible for S/S^0 , i.e., $V_t(\psi) \ge -a P$ -a.s. for all $t = 0, \ldots, T$.
- (b) Show without using (a) that if X admits an ELMM Q and $V_0 \in L^1(Q)$, then $V_t(\psi) \ge -a P$ -a.s. for all t = 0, ..., T.

Solution 5.2

(a) Suppose there exists a time point k such that the event $A = \{V_k(\psi) < -a\}$ has a strictly positive probability, i.e., P[A] > 0. Let k_0 be the largest such time point. Construct a self-financing strategy $\bar{\psi} = (\bar{\psi}^0, \bar{\vartheta})$ described by $V_0 = 0$ and

$$\bar{\vartheta}_k = \begin{cases} 0 & \text{if } k \neq k_0 + 1, \\ \vartheta_k I_A & \text{if } k = k_0 + 1. \end{cases}$$

Note that this process is indeed predictable since ϑ is predictable and $A \in \mathcal{F}_{k_0}$, and that $\bar{\psi}$ defines a self-financing strategy by Proposition II.1.2. Then $V(\bar{\psi}) = V_0 + G(\bar{\vartheta})$ implies that

$$V_{T}(\bar{\psi}) = V_{k_{0}+1}(\bar{\psi}) = V_{k_{0}} + \Delta G_{k_{0}+1}(\bar{\vartheta})$$

= 0 + I_{A} \Delta G_{k_{0}+1}(\vartheta) = \underbrace{V_{k_{0}+1}(\psi)I_{A}}_{\geq -aI_{A}} - \underbrace{V_{k_{0}}(\psi)I_{A}}_{<-aI_{A}} \geq 0 \quad P\text{-a.s.},

with strict inequality on A. In other words, $\bar{\psi}$ is an arbitrage opportunity. This is a contradiction, whence we conclude that ψ is a-admissible.

(b) By assumption, X is a local Q-martingale. Therefore, by Proposition C.4, $G(\vartheta)$ and hence also $V(\psi)$ is a local Q-martingale. Furthermore,

$$E_Q[|V_0(\psi)|] < \infty$$

and $E_Q[V_T^-(\psi)] \leq a$. So from Theorem C.5 we conclude that $V(\psi)$ is a true Q-martingale.

By the martingale property,

$$V_k(\psi) = E[V_T(\psi)|\mathcal{F}_k] \ge -a \quad Q\text{-a.s.},$$

for all t = 0, ..., T, thus also *P*-a.s., which is what we wanted to show.

Exercise 5.3 Let M be a local martingale which is bounded from below by -a for some $a \ge 0$ and is integrable at the initial time, i.e., $M_0 \in L^1(P)$. Show from the definitions that M is a supermartingale.

Solution 5.3 Denote by $(\tau_n)_{n \in \mathbb{N}}$ a localising sequence and let Y = M + a so that $Y \ge 0$ *P*-a.s. Then $Y^{\tau_n}I_{\{\tau_n>0\}}$ is a nonnegative martingale for every $n \in \mathbb{N}$. Note that since Y_0 is integrable, we can even drop the indicator function. Indeed,

$$Y_k^{\tau_n} = Y_0 I_{\{\tau_n = 0\}} + Y_k^{\tau_n} I_{\{\tau_n > 0\}},$$

where the first term is integrable, \mathcal{F}_0 -measurable and constant in k, hence a martingale. Moreover, since $\tau_n \nearrow \infty P$ -a.s.,

$$\lim_{n \to \infty} Y_k^{\tau_n} = Y_k \quad P\text{-a.s.}$$

for every $k \in \mathbb{N}_0$. Now M is adapted by assumption, and by Fatou's lemma,

$$E\left[\liminf_{n\to\infty} Y_k^{\tau_n}\right] \le \liminf_{n\to\infty} E[Y_k^{\tau_n}] = \liminf_{n\to\infty} E[Y_0^{\tau_n}] = E[Y_0] < \infty.$$

As $Y \ge 0$, this shows that Y is integrable, and so is then M = Y - a. Finally, using the conditional version of Fatou's lemma gives

$$E[Y_k|\mathcal{F}_j] = E\left[\liminf_{n \to \infty} Y_k^{\tau_n} \middle| \mathcal{F}_j\right]$$

$$\leq \liminf_{n \to \infty} E[Y_k^{\tau_n} \middle| \mathcal{F}_j] = \liminf_{n \to \infty} Y_j^{\tau_n} = Y_j \quad P\text{-a.s.}$$

for all $j \leq k$. This shows that Y, and therefore also M, is indeed a supermartingale.

Remark. The preceding arguments do not use anywhere that M is indexed by discrete time. So the result also holds in continuous time.