Introduction to Mathematical Finance Exercise sheet 6

Please submit your solutions online until Wednesday 10pm, 10/04/2024.

Exercise 6.1

(a) Suppose that $\left(\xi_{k}\right)_{k \in \mathbb{N}}$ are independent integrable random variables with expectation 1. Define the process $X=\left\{X_{n}\right\}_{n \in \mathbb{N}_{0}}$ by $X_{n}:=\prod_{k=1}^{n} \xi_{k}$. Show that X is a martingale for its natural filtration.
(b) Give an example of a stochastic process in discrete time which is not locally bounded.

Solution 6.1

(a) Denote the natural filtration of X as $\mathbb{F}=\left(\mathcal{F}_{k}\right)_{k \in \mathbb{N}_{0}}$. Then X is adapted by definition, and integrable because the product of independent integrable random variables is integrable. Moreover, by the definition of X and the properties of conditional expectation, we have

$$
E\left[X_{n}-X_{n-1} \mid \mathcal{F}_{n-1}\right]=\left(\prod_{k=1}^{n-1} \xi_{k}\right) E\left[\xi_{n}-1 \mid \mathcal{F}_{n-1}\right]=\left(\prod_{k=1}^{n-1} \xi_{k}\right) E\left[\xi_{n}-1\right]=0 .
$$

Thus X is a martingale.
(b) Start with a sequence $\left(\xi_{k}\right)_{k \in \mathbb{N}}$ of nonnegative random variables and define the process $X=\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ by $X_{n}=\sum_{k=1}^{n} \xi_{k}$. Then $X_{0}=0$, so $X^{\tau}=X^{\tau} I_{\{\tau>0\}}$, and so it is enough to consider any stopping times $\tau \geq 1$. Then $X_{\tau} \geq X_{1} I_{\{\tau \geq 1\}}=\xi_{1}$ because the ξ_{k} are nonnegative. So if ξ_{1} is unbounded, then X^{τ} cannot be bounded for any stopping time $\tau \geq 1$, and so X is not locally bounded.

Exercise 6.2

Consider a sequence $\left(\xi_{k}\right)_{k \in \mathbb{N}}$ of i.i.d. random variables with $\xi_{1} \sim \mathcal{N}(0,1)$. Define the process $M=\left(M_{n}\right)_{n \in \mathbb{N}_{0}}$ by $M_{n}:=\sum_{k=1}^{n} \xi_{k}$. Let $\mathbb{F}=\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}_{0}}$ be the natural filtration of M.
(a) Show that $X_{n}:=M_{n}^{2}-n, n \in \mathbb{N}_{0}$, is a martingale.
(b) Show that $Y_{n}:=\exp \left(M_{n}-n / 2\right), n \in \mathbb{N}_{0}$, is a martingale.
(c) For any bounded predictable process $\alpha=\left(\alpha_{i}\right)_{i \in \mathbb{N}}$ define $N:=\alpha \cdot M$ so that $N_{k}=\sum_{i=1}^{k} \alpha_{i}\left(M_{i}-M_{i-1}\right)$ for $k \in \mathbb{N}_{0}$. Define also $\langle N\rangle=\left(\langle N\rangle_{k}\right)_{k \in \mathbb{N}_{0}}$ by $\langle N\rangle_{k}:=\sum_{i=1}^{k} \alpha_{i}^{2}$. Show that $X:=N^{2}-\langle N\rangle$ and $Y:=\exp (N-\langle N\rangle / 2)$ are martingales.

Solution 6.2

Questions (a) and (b) follow directly from (c) by taking $\alpha \equiv 1$. So we only prove (c). Clearly, N is adapted and $\langle N\rangle$ is predictable for \mathbb{F}. Moreover, both X and Y are integrable because α is bounded and the ξ_{i} have all exponential moments. For the martingale property, note that N is a martingale, so that

$$
\begin{gathered}
E\left[\Delta\left(N^{2}\right)_{k} \mid \mathcal{F}_{k-1}\right]=E\left[\left(\Delta N_{k}\right)^{2} \mid \mathcal{F}_{k-1}\right]= \\
=\alpha_{k}^{2} E\left[\left(\Delta M_{k}\right)^{2} \mid \mathcal{F}_{k-1}\right]=\alpha_{k}^{2} E\left[\xi_{k}^{2}\right]=\alpha_{k}^{2}=\Delta\langle N\rangle_{k} .
\end{gathered}
$$

This shows that $X=N^{2}-\langle N\rangle$ is a martingale.
Similarly, using that α_{k} is \mathcal{F}_{k-1} - measurable, ξ_{k} is independent of \mathcal{F}_{k-1} and $\Delta N_{k}=\alpha_{k} \Delta M_{k}=\alpha_{k} \xi_{k}$, we get $E\left[Y_{k} / Y_{k-1} \mid \mathcal{F}_{k-1}\right]=E\left[\exp \left(\Delta N_{k}-\Delta\langle N\rangle_{k} / 2\right) \mid \mathcal{F}_{k-1}\right]=$ $E\left[\exp \left(\alpha_{k} \xi_{k}-\alpha_{k}^{2} / 2\right) \mid \mathcal{F}_{k-1}\right]=\left.E\left[\exp \left(\lambda \xi_{k}-\lambda^{2} / 2\right)\right]\right|_{\lambda=\alpha_{k}}=1$ because $\xi_{k} \sim \mathcal{N}(0,1)$. So Y is also a martingale.

Exercise 6.3

Using the notions from the lecture, show that the following are equivalent:
(a) $S=S^{0}(1, X)$ satisfies NA.
(b) $\mathcal{G}_{\text {adm }} \cap L_{+}^{0}=\{0\}$.
(c) $\mathcal{C}_{\text {adm }} \cap L_{+}^{0}=\{0\}$.

Solution 6.3 By Exercise 4.3(c), NA for S and NA for S / S^{0} are equivalent. By Proposition II.2.1, NA for S / S^{0} is equivalent to $\mathcal{G} \cap L_{+}^{0}\left(\mathcal{F}_{T}\right)=\{0\}$, and this is also equivalent to $\mathcal{G} \cap L_{+}^{0}=\{0\}$ because $\mathcal{G} \subseteq L^{0}\left(\mathcal{F}_{T}\right)$. Because $0 \in \mathcal{G}_{\text {adm }} \subseteq \mathcal{G}$, the condition $\mathcal{G} \cap L_{+}^{0}=\{0\}$ implies $\mathcal{G}_{\text {adm }} \cap L_{+}^{0}=\{0\}$, and so we get " $(a) \Rightarrow(b)$ ".
Conversely, if we look at the proof of "5) $\Rightarrow 1$)" for Proposition II.2.1, we can see that a slight modification also proves that $\mathcal{G}_{a d m} \cap L_{+}^{0}=\{0\}$ implies NA for S / S^{0}. Indeed, if ψ is a-admissible in that argument, then

$$
V(\bar{\psi})=V(\psi)-V_{0}(\psi) V\left(\psi^{*}\right)=V(\psi)-V_{0}(\psi) \geq V(\psi)
$$

shows that $\bar{\psi}$ is also a-admissible, and the rest of the argument goes as before. So we also have " $(b) \Rightarrow(a)$ ".
Because $0 \in \mathcal{G}_{a d m} \subseteq \mathcal{C}_{a d m}$, we clearly have " $(c) \Rightarrow(b)$ ". Conversely, if $c \in \mathcal{C}_{a d m}$, then $c=g-Y$ with $g \in \mathcal{G}_{\text {adm }}$ and $Y \geq 0$. If also $c \in L_{+}^{0}$, then $c \geq 0$ and $g=c+Y \geq 0$ so that $g \in \mathcal{G}_{\text {adm }} \cap L_{+}^{0}$. By (b), we then have $0=g=c+Y$ with $c \geq 0, Y \geq 0$, and therefore also $c=0$. This shows that $\mathcal{C}_{a d m} \cap L_{+}^{0}=\{0\}$ and hence " $(b) \Rightarrow(c)$ ".

