Introduction to Mathematical Finance Exercise sheet 7

Please submit your solutions online until Wednesday 10pm, 17/04/2024.
Exercise 7.1 Construct probability measures \mathbb{P} and \mathbb{Q} such that $\mathbb{Q} \stackrel{\text { loc }}{\approx} \mathbb{P}$ with $\mathbb{Q} \not \approx P$ and even $\lim _{T \rightarrow \infty} Z_{T}^{\mathbb{Q} ; \mathbb{P}}=0 \mathbb{P}$-a.s.

Solution 7.1

Let $\Omega=\{0,1\}^{\mathbb{N}}, Y_{k}(\omega)=\omega_{k}, \mathcal{F}_{k}=\sigma\left(Y_{1}, \ldots, Y_{k}\right)$ and $\mathcal{F}=\mathcal{F}_{\infty}=\sigma\left(Y_{1}, Y_{2}, \ldots\right)$. Let P and Q be measures with $P\left[Y_{k}=1\right]=p \in(0,1), Q\left[Y_{k}=1\right]=q \in(0,1), p \neq q$ and such that $Y_{k}, k \in \mathbb{N}$, are independent under both measures. Then

$$
P\left[Y_{1}=y_{1}, \ldots, Y_{T}=y_{T}\right]=p^{\sum_{i=1}^{T} y_{i}}(1-p)^{T-\sum_{i=1}^{T} y_{i}}
$$

and

$$
Q\left[Y_{1}=y_{1}, \ldots, Y_{T}=y_{T}\right]=q^{\sum_{i=1}^{T} y_{i}}(1-q)^{T-\sum_{i=1}^{T} y_{i}}
$$

Define $S_{T}:=\sum_{j=1}^{T} Y_{j}$. Then for $T \geq 1$

$$
Z_{T}^{Q ; P}=\left.\frac{d Q}{d P}\right|_{\mathcal{F}_{T}}=\left(\frac{q}{p}\right)^{S_{T}}\left(\frac{1-q}{1-p}\right)^{T-S_{T}} .
$$

Hence for every $k \in \mathbb{N}_{0},\left.\left.P\right|_{\mathcal{F}_{k}} \approx Q\right|_{\mathcal{F}_{k}}$, and $\left.P\right|_{\mathcal{F}_{0}}=\left.Q\right|_{\mathcal{F}_{0}}$ because $\mathcal{F}_{0}=\{\varnothing, \Omega\}$. However, by the law of large numbers, the set

$$
A=\left\{\omega: \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} \omega_{k}=p\right\}
$$

has $P[A]=1$, but $Q[A]=0$. Hence, $P \not \approx Q$.
Suppose that $p>1 / 2$ and $q=1-p$. Then from the computations above we have $Z_{T}^{Q ; P}=\left(\frac{q}{p}\right)^{2 S_{T}-T} \longrightarrow 0$ as $T \rightarrow \infty P$-a.s. by the law of large numbers.

Exercise 7.2

(a) Let U be a standard normal random variable $U \sim \mathcal{N}(0,1)$. Consider a market with $T=1, X_{0}=1$ and $X_{1}=e^{\sigma U+\mu}$ for some constants $\mu, \sigma \in \mathbb{R}, \sigma \neq 0$. Construct an EMM for X.
(b) Consider a market with $X_{0}=1$ and $X_{k}:=\prod_{j=1}^{k} e^{R_{j}}, k=1, \ldots, T$, where R_{1}, \ldots, R_{T} are i.i.d. with $R_{1} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ for some constants $\mu, \sigma \in \mathbb{R}, \sigma \neq 0$. Let $\mathbb{F}=\left(\mathcal{F}_{t}\right)_{t=1}^{T}$ be the natural filtration of X. Show that the market is arbitrage-free.

Solution 7.2

(a) It is enough to construct a positive random variable D with $E[D]=1$ and $E\left[X_{1} D\right]=1$, because then we can define the EMM by $\frac{d Q}{d P}:=D$. Consider D of the form $D=\exp (\alpha U+\beta)$ with some constants $\alpha, \beta \in \mathbb{R}$. Then we have $E[D]=\exp \left(\beta+\alpha^{2} / 2\right)$; so $E[D]=1$ if and only if $\beta=-\alpha^{2} / 2$. From $E\left[X_{1} D\right]=\exp \left(\mu+\beta+(\sigma+\alpha)^{2} / 2\right)$, we conclude that $E\left[X_{1} D\right]=1$ if and only if $\mu+\beta+(\sigma+\alpha)^{2} / 2=0$. Thus we have both $E[D]=1$ and $E\left[X_{1} D\right]=1$ if and only if

$$
\left\{\begin{array}{l}
\beta=-\frac{\alpha^{2}}{2} \\
\mu+\beta+(\sigma+\alpha)^{2} / 2=0
\end{array}\right.
$$

which gives us, after substituting the first equation into the second, that

$$
\left\{\begin{array}{l}
\beta=-\frac{\alpha^{2}}{2} \tag{1}\\
\alpha=-\frac{\mu+\sigma^{2} / 2}{\sigma}
\end{array}\right.
$$

and $\frac{d Q}{d P}:=D$ with these parameters defines the EMM for X .
(b) For $k=1, \ldots, T$, we have $X_{k}=\prod_{j=1}^{k} e^{R_{j}}=\prod_{j=1}^{k} e^{\sigma U_{j}+\mu}$, where $U_{j}:=\left(R_{j}-\mu\right) / \sigma$ are i.i.d. with $U_{1} \sim \mathcal{N}(0,1)$. Set $D_{k}:=\exp \left(\alpha U_{k}+\beta\right)$, where α, β are defined in (a) by (1). Then with the same arguments as in (1) we have that $E\left[D_{k} \mid \mathcal{F}_{k-1}\right]=1$ and $E\left[\left.D_{k} \frac{X_{k}}{X_{k-1}} \right\rvert\, \mathcal{F}_{k-1}\right]=E\left[D_{k} e^{R_{k}} \mid \mathcal{F}_{k-1}\right]=1$. Hence

$$
\frac{d Q}{d P}:=\prod_{k=1}^{T} D_{k}
$$

yields an EMM for X, and so the market is arbitrage-free.

Exercise 7.3

Consider a market $(1, X)$ with $X_{0}=1$ and $X_{k}=\prod_{j=1}^{k} R_{j}$ for $k=1, \ldots, T$, where R_{1}, \ldots, R_{T} are i.i.d. under \mathbb{P} and >0. The filtration \mathbb{F} is generated by X. Suppose that we have an EMM \mathbb{Q} for X of the form

$$
\frac{d \mathbb{Q}}{d \mathbb{P}}=\prod_{k=1}^{T} g_{1}\left(R_{k}\right)
$$

for a measurable function $g_{1}:(0, \infty) \mapsto(0, \infty)$. Show that R_{1}, \ldots, R_{T} are also i.i.d. under \mathbb{Q}.

Solution 7.3 Random variables Z_{1}, \ldots, Z_{N} are independent under P if and only if for any measurable and bounded functions f_{1}, \ldots, f_{N}, we have

$$
E^{P}\left[\prod_{j=1}^{N} f_{j}\left(Z_{j}\right)\right]=\prod_{j=1}^{N} E^{P}\left[f_{j}\left(Z_{j}\right)\right]
$$

Consider any measurable and bounded functions f_{1}, \ldots, f_{T}. Then

$$
E^{Q}\left[\prod_{j=1}^{T} f_{j}\left(R_{j}\right)\right]=E^{P}\left[\prod_{j=1}^{T} f_{j}\left(R_{j}\right) \prod_{j=1}^{T} g_{1}\left(R_{j}\right)\right]=E^{P}\left[\prod_{j=1}^{T} f_{j}\left(R_{j}\right) g_{1}\left(R_{j}\right)\right] .
$$

Since R_{1}, \ldots, R_{T} are independent under P, then for any measurable functions z_{1}, \ldots, z_{T} such that $E^{P}\left[z_{j}\left(R_{j}\right)\right]<\infty$ for $j=1, \ldots, T$, we have

$$
E^{P}\left[\prod_{j=1}^{T} z_{j}\left(R_{j}\right)\right]=\prod_{j=1}^{T} E^{P}\left[z_{j}\left(R_{j}\right)\right]
$$

Hence, by taking $z_{j}:=f_{j} \cdot g_{1}$, we derive that

$$
E^{P}\left[\prod_{j=1}^{T} f_{j}\left(R_{j}\right) g_{1}\left(R_{j}\right)\right]=\prod_{j=1}^{T} E^{P}\left[f_{j}\left(R_{j}\right) g_{1}\left(R_{j}\right)\right]
$$

and so

$$
E^{Q}\left[\prod_{j=1}^{T} f_{j}\left(R_{j}\right)\right]=\prod_{j=1}^{T} E^{P}\left[f_{j}\left(R_{j}\right) g_{1}\left(R_{j}\right)\right] .
$$

On the other hand, since R_{1}, \ldots, R_{T} are i.i.d. under P, we have

$$
1=E^{P}\left[\frac{d Q}{d P}\right]=E^{P}\left[\prod_{j=1}^{T} g_{1}\left(R_{j}\right)\right]=\prod_{j=1}^{T} E^{P}\left[g_{1}\left(R_{j}\right)\right]=\left(E^{P}\left[g_{1}\left(R_{1}\right)\right]\right)^{T}
$$

hence $E^{P}\left[g_{1}\left(R_{j}\right)\right]=E^{P}\left[g_{1}\left(R_{1}\right)\right]=1$. Finally,

$$
\prod_{j=1}^{T} E^{Q}\left[f_{j}\left(R_{j}\right)\right]=\prod_{j=1}^{T} E^{P}\left[f_{j}\left(R_{j}\right) \prod_{j=1}^{T} g_{1}\left(R_{j}\right)\right]=
$$

$$
=\prod_{j=1}^{T} E^{P}\left[f_{j}\left(R_{j}\right) g_{1}\left(R_{j}\right)\right] \prod_{i \neq j} E^{P}\left[g_{1}\left(R_{i}\right)\right]=\prod_{j=1}^{T} E^{P}\left[f_{j}\left(R_{j}\right) g_{1}\left(R_{j}\right)\right] .
$$

Thus we proved that

$$
E^{Q}\left[\prod_{j=1}^{T} f_{j}\left(R_{j}\right)\right]=\prod_{j=1}^{T} E^{P}\left[f_{j}\left(R_{j}\right) g_{1}\left(R_{j}\right)\right]=\prod_{j=1}^{T} E^{Q}\left[f_{j}\left(R_{j}\right)\right]
$$

hence R_{1}, \ldots, R_{T} are independent under Q.
Since R_{1}, \ldots, R_{T} are i.i.d. under P , then for $j=1, \ldots, T$ and any measurable and bounded function f, we have

$$
\begin{gathered}
E^{Q}\left[f\left(R_{j}\right)\right]=E^{P}\left[f\left(R_{j}\right) g_{1}\left(R_{j}\right)\right] \prod_{i \neq j} E^{P}\left[g_{1}\left(R_{i}\right)\right]=E^{P}\left[f\left(R_{j}\right) g_{1}\left(R_{j}\right)\right]= \\
=E^{P}\left[f\left(R_{1}\right) g_{1}\left(R_{1}\right)\right]
\end{gathered}
$$

hence R_{1}, \ldots, R_{T} are identically distributed under Q .
Above we used the property that random variables ξ_{1}, \ldots, ξ_{n} are identically distributed under Q if and only if for any measurable and bounded function f we have $E^{Q}\left[f\left(\xi_{j}\right)\right]=E^{Q}\left[f\left(\xi_{1}\right)\right]$ for $j=1, \ldots, n$. To prove this property it is enough to apply the equality $E^{Q}\left[f\left(\xi_{j}\right)\right]=E^{Q}\left[f\left(\xi_{1}\right)\right]$ to the functions $f(x)=f_{y}(x):=I_{x \leq y}$.

