Mathematics for New Technologies in Finance
 Exercise sheet 3

Through this exercise sheet, we let $E=\mathbb{R}^{d}, J$ an interval on \mathbb{R}, and denote $\operatorname{Sig}_{J}: \mathcal{C}_{0}^{1}(J, E) \rightarrow$ $\mathbf{T}(E)$ the signature map such that for all $X \in \mathcal{C}_{0}^{1}(J, E)$ and we let $\mathbf{S i g}_{J}^{(M)}$ denote the truncated signature map up to order $M: \operatorname{Sig}_{J}^{(M)}(X)=\left(1, \mathbf{s}_{1}, \cdots, \mathbf{s}_{M}\right) \in \mathbf{T}^{(M)}(E)$. Let $X \in \mathcal{C}_{0}^{1}([0, s], E)$ and $Y \in \mathcal{C}_{0}^{1}([s, t], E)$.

Exercise 3.1 (Signatures)

(a) Let $X_{t}=t \mathbf{x} \in \mathbb{R}^{d}$ for all $t \in[0,1]$. Calculate $\operatorname{Sig}_{[0,1]}(X)$.
(b) Let $X \in \mathcal{C}_{0}^{1}([0, T], E)$ and $X_{0}=0$. Prove that

$$
\begin{equation*}
\operatorname{Sig}_{[0,1]}(X)_{1,2}+\operatorname{Sig}_{[0,1]}(X)_{2,1}=\operatorname{Sig}_{[0,1]}(X)_{1} \cdot \operatorname{Sig}_{[0,1]}(X)_{2} \tag{1}
\end{equation*}
$$

Exercise 3.2 (Calculate Signatures)

(a) Let $X \in \mathcal{C}_{0}^{1}([0,1], \mathbb{R})$ s.t. $X_{t}=\sin (t)$ for all $t \in[0,1]$. Calculate $\operatorname{Sig}_{[0,1]}^{(2)}(X)$ i.e. the signatures of X up to order 2 .
(b) Let $X \in \mathcal{C}_{0}^{1}\left([0,1], \mathbb{R}^{2}\right)$ s.t. $X_{t}=(t, \sin (t))$ for all $t \in[0,1]$. Calculate $\operatorname{Sig}_{[0,1]}^{(2)}(X)$ i.e. the signatures of X up to order 2.
(c) Let $X \in \mathcal{C}_{0}^{1}([0,1], \mathbb{R})$ and $n \in \mathbb{N}$. Calculate $\int_{0}^{1} t^{n} d X_{t}$ when
(i) $X_{t}=t$
(ii) $X_{t}=\sin (t)$
(d) Prove that

$$
\mathcal{F}=\left\{\mathcal{C}_{0}^{1}([0,1], \mathbb{R}) \ni X \mapsto \sum_{i=1}^{n} \lambda_{i} \int t^{i} d X_{t} \in \mathbb{R}: \forall \lambda_{i} \in \mathbb{R}, n \in \mathbb{N}\right\}
$$

is a point-separating vector space. $\mathcal{C}_{0}^{1}([0,1], \mathbb{R})$ is the space of all function f on $[0,1]$ with $f(0)=0$ and f has continuous derivative.

Exercise 3.3 (Controlled ODEs) Consider the controlled ODE: $X_{0}=x \in \mathbb{R}$

$$
\begin{equation*}
d X_{t}^{\theta}=V^{\theta}\left(t, X_{t}^{\theta}\right) d t, \quad t \in[0, T] \tag{2}
\end{equation*}
$$

(a) Let

$$
\begin{equation*}
a_{t}=\frac{\partial X_{T}^{\theta}}{\partial X_{t}^{\theta}} \tag{3}
\end{equation*}
$$

Prove that

$$
\begin{equation*}
\frac{d}{d t} a_{t}=-\frac{\partial V^{\theta}}{\partial x}\left(t, X_{t}^{\theta}\right) \cdot a_{t}, \quad a_{T}=1 \tag{4}
\end{equation*}
$$

and relate a_{t} with $J_{t, T}$ in the lecture notebook.
(b) Prove that

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial X_{t}^{\theta}}{\partial \theta} a_{t}\right)=a_{t} \frac{\partial V^{\theta}}{\partial \theta}\left(t, X_{t}^{\theta}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial X_{T}^{\theta}}{\partial \theta}=-\int_{T}^{0} \frac{\partial X_{T}^{\theta}}{\partial X_{t}^{\theta}} \cdot \frac{\partial V^{\theta}}{\partial \theta}\left(t, X_{t}^{\theta}\right) d t \tag{6}
\end{equation*}
$$

(c) Is every feedforward neural network a discretization of controlled ODE?

Exercise 3.4 (Linear controlled ODE) Let $E=\mathbb{R}^{d}, W=\mathbb{R}^{n}$. Let $X \in \mathcal{C}_{0}^{1}([0, T], E)$ and let $B: E \rightarrow \mathbf{L}(W)$ be a bounded linear map. Consider

$$
\begin{equation*}
d Y_{t}=B\left(d X_{t}\right)\left(Y_{t}\right) \tag{7}
\end{equation*}
$$

If we denote $B^{k}=B\left(e_{k}\right), k=1, \cdots, d$ then

$$
\begin{equation*}
d Y_{t}=\sum_{k=1}^{d} B^{k}\left(Y_{t}\right) d X_{t}^{k} \tag{8}
\end{equation*}
$$

Prove that

$$
\begin{equation*}
Y_{t}=\left(\sum_{k=0}^{\infty} B^{\otimes k}\right)\left(\operatorname{Sig}_{[0, t]}(X)\right) Y_{0} \tag{9}
\end{equation*}
$$

This implies that the solution of controlled SDE could be written as a linear function on signature stream of driving path. This implies that signature stream is a promising feature for controlled ODE.

References

[1] Ilya Chevyrev and Andrey Kormilitzin. A primer on the signature method in machine learning. arXiv preprint arXiv:1603.03788, 2016.
[2] Terry J Lyons, Michael Caruana, and Thierry Lévy. Differential equations driven by rough paths. Springer, 2007.

