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Some hints:

1. Recall that we denote with C(X ) the set of all continuous functions f : X → R.
If X = {x1, . . . , xn} is some finite set, then we can identify C(X ) with Rn.

2. In Question 2-4, you will have to write pseudo code. This means that you are
supposed to describe in a structured way how your algorithm works. It is not
necessary to have precise syntax. Hence, you can also use mathematical notation
if it is clear how it is meant (e.g. subscripts, powers and standard functions like√
· etc). One example would be that if you have a vector α ∈ Rn, you write the

sum of the elements either by (you can use Greek letters etc)

value sum =
∑n

i=1 αi

or you could write

value sum = 0
f o r i = 1 , . . . , l en (α ) :

value sum = value sum + αi

where these are just examples. Another example of a function you may use is the
function cumsum that computes the cumulative sum of a vector v ∈ Rk, i.e.

cumsum( v ) = w ∈ Rk with wi =
∑i

j=1 vj .

You may further use any python (including numpy), Matlab or R syntax, i.e. in
order to define a vector τ = (0, 1, . . . , n), you can e.g. write either of the following
without further commenting,

• τ = l i n s p a c e (0 , n , n+1)
• τ = arange (n+1)
• τ = (0, 1, . . . , n)

Use a % to write comments, e.g. if you explain what a function you use does. You
can structure your code by defining functions, i.e. the following is admissible:

% randomnormal ( k ) r e tu rn s a random vecto r o f
% length k that i s standard normal d i s t r i b u t e d
v = randomnormal (10)
so lu t i on1 , s o l u t i o n 2 = foo ( v )

func t i on foo ( x ) :
% s i n and cos f o r a vec to r x i s app l i ed
% component wise
re turn ( s i n ( x ) , cos ( x ) )

which generates a standard normal random vector v ∈ R10, and returns two
vectors with components being the sin (stored in solution1) and cos (stored in
solution2) of the corresponding components of the random vector. The goal of
your pseudo code is only to show how your algorithm works, so do not spend time
on thinking about whether this syntax is correct in some programming language.



Question 1. (10 points)

(a) (3 points) Universal Approximation Theorem (UAT):

i. Let C(K,R) denote the continuous functions on the unit cube in Rd. Let
A be a subset of C(K,R). Under which conditions can we conclude that
A is dense?
A. A is a vector subspace additionally closed under multiplication and
containing the constant function 1.
B. A is a vector subspace which additionally separates points.
C. A is a vector subspace additionally closed under multiplication, con-
taining the constant function 1, which separates points.
D. A is closed under multiplication, containing the constant function 1,
which separates points.

ii. Let NN be the set of shallow neural networks in C(K,R) with RELU
activation.
A. NN is a vector space but not separating points.
B. NN is a vector space closed under multiplication.
C. NN is a vector space additionally separating points.
D. NN is not a vector space but separates points.

iii. Let NN be the set of shallow neural networks in C(R,R) with respect
to RELU activation. Let L be the set of shallow neural networks on the
unit cube K in Rd with respect to RELU activation. Denote by NN (L)
the vector space of linear combinations all compositions f ◦ l of a network
f ∈ NN with a function l ∈ L, i.e. neural networks with two hidden
layers.
A. NN (L) is dense in C(K,R).
B. NN (L) is only dense in C(K,R) if it is additionally closed under
multiplication.
C. NN (L) is only dense in C(K,R) if it is additionally closed under
multiplication and point separating.
D. NN (L) is not dense in C(K,R).

(b) (3 points) Signatures:

i. Let u : [0, T ] → Rd+1 be a bounded variation curve, i.e. integrals along
the curve are well defined. Component 0 equals the square of time itself,
i.e. u0(t) = t2, and the curve starts at 0. By Signature Sig we mean the
vector of all iterated integrals integrated up to time T .
A. Sig determines the curve (u1, . . . , ud) uniquely.
B. Sig determines the curve (u1, . . . , ud) up tree like equivalences.
C. Sig determines only the end point of the curve (u1, . . . , ud).
D. Sig determines the curve (u1, . . . , ud) up to a constant factor.

ii. Consider on path space of bounded variation curves on [0, T ] starting at
0 with zeroth component equal time itself all possible linear combinations
of signature components. We denote this set by A.
A. A is a point separating vector space which is closed under multiplica-
tion.
B. A is a point separating vector space but not closed under multiplica-
tion.
C. A is a vector space closed under multiplication but not point separa-
ting.



D. A is a vector space but neither point separating nor closed under mul-
tiplication.

iii. What is the number of signature components up to depth M for a curve
u : [0, T ]→ Rd (M fold iterated integrals).

A. (d)M+1−1
d−1

B. dM+1

C. dM

D. Md

(c) (4 points) Definitions: Give the precise definition of a discriminatory and a
sigmoidal (activation) function σ : R → R. Define shallow and deep neural
networks and provide a formula for the number of free parameters for a deep
network with two hidden layers from [0, 1]200 to R10.



Question 2. (10 points)

(a) (3 points) Financial Markets:

i. Let St = (S0
t , . . . , S

d
t ) denote a random vector of asset prices at time

t adapted to the information filtration Ft, for t = 0, . . . , N and let ϕt
denote a vector of holdings in each asset (adapted to Ft−1). We denote by
Vt =

∑
i ϕ

i
tS

i
t the value of the portfolio at time t. When is this portfolio

self-financing?
A. It is never self-financing, since we did not specify a bank account.
B. If

∑
i ϕ

i
t+1S

i
t =

∑
i ϕ

i
tS

i
t for t = 0, . . . , N − 1.

C. If
∑

i ϕ
i
tS

i
t+1 =

∑
i ϕ

i
tS

i
t for t = 0, . . . , N − 1.

D. It is always self-financing.

ii. Let ϕ be a self-financing portfolio in a financial market with bank account
S0 = 1 (zero interest rate) with value process V :
A. Vt+1 − Vt =

∑
i ϕ

i
t+1(S

i
t+1 − Sit) for t = 0, . . . , N − 1.

B. Vt+1 − Vt =
∑

i ϕ
i
t(S

i
t+1 − Sit) for t = 0, . . . , N − 1.

C. Vt+1 − Vt = 0 due to the self-financing condition for t = 0, . . . , N − 1.
D. The expression Vt+1 − Vt =

∑
i ϕ

i
t+1S

i
t+1 − ϕitSit) cannot be simplified.

iii. Let S be a financial market with a general bank account process S0:
A. The market is free of arbitrage if there is no self-financing portfolio
with V0 = 0 and VN ≥ 0 and VN 6= 0.
B. The market is free of arbitrage if for one self financing portfolio there
is an equivalent martingale measure.
C. The market is free of arbitrage if there is a self-financing portfolio,
which looses, i.e. V0 = 0 and VN ≤ 0 and VN 6= 0.
D. Absence of arbitrage can only be characterized by the existence of
martingale measures for discounted markets and not by portfolio value
processes.

(b) (3 points) Deep Trading:

i. Let S be a financial market with general bank account S0 = 1 on a finite
probability space, where the filtration is generated by the price process
itself. How can we represent any self-financing trading strategies ϕ by
neural networks:
A. We write ϕit as a neural network of St−1 for t = 1, . . . , N and i =
1, . . . , d.
B. We write ϕit as a neural network of St−1 for t = 1, . . . , N and i =
0, . . . , d.
C. We write ϕit as a neural network of St−1, . . . , S0 for t = 1, . . . , N and
i = 0, . . . , d.
D. We write ϕit as a neural network of St−1, . . . , S0 for t = 1, . . . , N and
i = 1, . . . , d.

ii. Let u : dom(u)→ R be a utility function. What does this precisely mean?
A. u is monotone and concave.
B. u is monotone.
C. u is concave.
D. u is differentiable with positive first derivative.

iii. Let S be a financial market with bank account S0 = 1 (zero interest rate)
on a finite probability space, where the filtration is generated by the price
process itself. Consider now a utility function u : R>0 → R and denote by



VN the value of a self-financing portfolio at time N with initial capital x.
What is the objective for the expected utility optimization problem?
A. u(VN).
B. u(VN + x).
C. E[u(VN)].
D. We have to choose an equivalent martingale measure Q and calculate
EQ[u(VN)].

(c) (4 points) Consider an N step model (Sn) (bank account S0 = 1) of conditio-
nal binomial form, i.e. the parameters of the model dependent on a fixed two
state Markov chain (Xn),

P [Sn+1 = Snu|Sn, Xn] = p(Xn);P [Sn+1 = Snd|Sn, Xn] = 1− p(Xn) ,

where u > 1 > d > 0 and an exponential utility function U(x) = 1− exp(−x).

Given a utility u write down in pseudocode an algorithm that learns the self-
financing trading strategy with initial capital x for T = N trading days using
M generated trajectories of the binomial market model. For the training part,
use stochastic gradient descent with step size γ > 0 and make K ∈ N epochs.
Gradients are computed with mini-batches of size one.

Hint: You may use a function phi(x,θ) that implements a smooth neural
network with input x∈ Rn where you can specify the input dimension n before
using the function and θ∈ RL is a parameter vector corresponding to the
weights of the neural network. You do not need to specify an architecture or say
what L is, you can assume phi is suitable for approximating any continuous
function. If you need multiple neural networks, write them as phii for i ∈ N.
In that case, specify each input dimension with ni, the corresponding weights
with θi.

The trajectories are stored in a Matrix S ∈ RM×(N+1).

Finally, you can use derivatives such as gradients at will. E.g. if you have
a value cost, that depends in some way on the values of θ, then grad =∇θ

cost computes the gradient w.r.t. the weights θ and stores the gradient in
grad for the current values of θ. If the values of θ change, you may assume
that the value of grad changes automatically to the gradient evaluated at the
new value of θ.



Question 3. (16 points)

(a) Calibration of models: describe the calibration problem as inverse problem of
selecting a model given some data and some pool of models.

[2 Points]

(b) Describe the Bayesian approach of model selection and compare it to the
optimization approach. Explain in particular the connection of the choice of a
prior and regularization. Why is ’gradient descent plus noise’ a good approach
for training?

[4 Points]

(c) What is a local volatility model and what are they for: derive the relationship
between option prices and the local volatility function.

[2 Points]

(d) What is a local stochastic volatility model and what are they for: why does
this not lead to a standard stochastic differential equation?

[2 Points]

(e) Write down pseudocode to learn a local stochastic volatility for finitely many
given option prices: assume a Heston stochastic variance and parametrize
local volatility by a neural network and solve the pricing equation by an
Euler scheme, then define a loss function and write down the optimization
problem that one needs to solve such that model prices and market prices are
close. Discuss mini-batching in this approach, does it work or rather not?

[6 Points]



Question 4. (10 points)

(a) (3 points) Machine Learning in Finance:

i. When could it be useful to try a machine learning approach in Finance?
A. For example for the Black Scholes Formula: we can train a neural net-
work to approximate its values.
B. When we do not want to use a stochastic model for the market.
C. When the problem is mathematically well specified, but difficult to
solve with classical numerical techniques, e.g. high dimensional problems
with transaction costs.
D. When we do not have an idea how to formulate the problem mathe-
matically.

ii. Which typical problem for finance has never been treated by machine
learning techniques?
A. The hedging problem, i.e. how to invest in a financial market to reduce
risks.
B. The calibration problem, i.e. how to choose a model from a pool of
models.
C. The simulation problem, i.e. how to generate realistic scenarios for a
financial market artficially.
D. The risk measurement problem, i.e. how to choose a risk measure
correctly.

iii. Which main ingredients do you need to formulate a machine learning pro-
blem in finance?
A. A neural network encoding actions in a financial market, a loss func-
tion and a training method.
B. A stochastic model, a utility function and a set of portfolio strategies.
C. A stochastic model, a loss function and a portfolio strategy.
D. A neural network, a utility function and an idea about risk aversion.

(b) (3 points) Architectures:

i. Which of the following terms does not describe an architecture of a neural
network?
A. Recurrent networks.
B. Resilient networks.
C. Residual networks.
D. Convolutional networks.

ii. Do neural networks, which work well in practice, depend on many para-
meters?
A. No, it is an important principle in science to use as few parameters as
possible.
B. No, neural networks only use affine functions which depend on few
parameters.
C. Yes, since Relu depends on many parameters.
D. Yes, since the affine functions in each layer map high dimensional
spaces to high dimensional spaces and do therefore need high dimensional
matrices.

iii. Consider a shallow network with k hidden nodes on [0, 1]d mapping to R
(we always take a shift term here).
A. The number of parameters is kd+ k for the affine function in the hid-
den layer and k + 1 for the last layer.



B. The number of parameters is kd for the affine function in the hidden
layer and k + 1 for the last layer.
C. The number of parameters is kd+ k for the affine function in the hid-
den layer and k for the last layer.
D. The number of parameters is kd for the affine function in the hidden
layer and k for the last layer.

(c) (4 points) Describe in a short text which problems can be treated by Machine
Learning in Finance and why this might be important for future developments
in the financial sector. Which problems do you expect to be treated in the
future?


