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Exercise 2.1 (Stone-Weierstrass theorem [1])
(a) Construct a sequence of polynomials converges pointwisely but not uniformly on [0, 1].

(b) Construct a sequence of polynomials converges uniformly to x 7→ |x| on [−1, 1]. (Hint:
Corollary 2.3. in [1])

(c) Prove that ReLU can be approximated uniformly by polynomials on [−1, 1].

(d) Use the universal approximation theory of shallow neural networks on [0, 1] to prove the
Stone-Weierstrass theorem.

Solution 2.1
(a) Consider the function fn(x) = xn for x ∈ [0, 1].

(b) Consider the following map

pn+1(x) = pn(x) + 1
2(x − p2

n(x)), (1)

which is a contraction on [0, 1) and the special case x = 1 is obvious.

(c) g(x) = 1
2 (x + |x|)

(d) Since ReLU can be approximated uniformly by polynomials on [0, 1], composition of affine
function and ReLU can be uniformly by polynomials on [0, 1]. Thus, shallow neural networks
can be uniformly by polynomials on [0, 1]. Therefore, by UAT, polynomials can uniformly
approximate any continuous function on [0, 1].

Exercise 2.2 (Networks on discrete path spaces)
(a) Describe the space of paths ω : {1, . . . , T} → Rd as RdT .

(b) Describe a shallow neural network, which depends on value at time t and on path information
up to time t. Formulate a universal approximation theorem in this setting.

Solution 2.2
(a) Maps from {1, . . . , T} to Rd expressed by RdT .

(b) A neural network with input space Rdt for fixed t, a neural network with input space at least
RdT (might be larger if allow duplicated information in input space). UAT for path space is
concerning universal approximation of continuous functional on path spaces e.g. the running
max of a discrete path.

Exercise 2.3 (Backpropogation of neural network) Let θ = (w, b, a) ∈ R3 and let σ be the
activation function. We consider the shallow neural network fθ:R → R s.t.

fθ(x) = aσ(wx + b). (2)

Then we solve the regression problem with 3 data point (xi, yi) ∈ R2, i = 1, 2, 3 by minimizing the
L2 loss

Lf =
∑

i=1,2,3
(fθ(xi) − yi)2

. (3)
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(a) When solving the regression, do we compute ∇x0Lf or ∇θLf ?

(b) Compute ∂wf and ∂bf by chain rule. Do you find any intermediate value computed twice in
both ∂wf and ∂bf?

(c) Consider regression problem as a constrained optimization problem

min
∑

i=1,2,3
li

li = (ỹi − yi)2

ỹi = aσ(zi), i = 1, 2, 3.

zi = wxi + b

(4)

Solve it by Lagrange multiplier and relate this with backpropagation.

(d) Generalize this idea to deep neural networks.

Solution 2.3

(a) ∇θLf

(b) Let z = wx0 + b then

∂wLf = ∂zLf · x0 = (aσ(w0x + b) − y0)σ′a(wx0 + b)x0, (5)
∂bLf = ∂zLf · 1 = (aσ(wx0 + b) − y0)aσ′(wx0 + b) (6)

(c) Consider the Lagrangian

L = l − λl(l − (y − y0)2) − λy(y − aσ(z)) − λz(z − (wx0 + b)) (7)

Compute the gradient

∂lL = 1 − λl

∂yL = λl
∂(y − y0)2

∂y
− λy

∂zL = λy
∂aσ(z)

∂z
− λz

∂wL = λz
∂(wx0 + b)

∂w

∂bL = λz
∂(wx0 + b)

∂b

Let ∇L = 0 we get exactly the backpropagation formula.

(d) See [4].

Exercise 2.4 (Functional analysis) Let K be a compact subset of Rd.

(a) Let µ be a finite Borel measure on K. Prove that

Lµ(f) :=
∫

K

f(x)µ(dx) (8)

for f ∈ C(K,R) is a bounded linear functional.
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(b) Let L, C(K,R) be a positive linear functional, i.e. L(f) ≥ 0 for f ≥ 0. Then L is continuous.

(c) Prove that

F := {f 7→
n∑

i=1
λif(xi) | λi ∈ R, n ∈ N, xi ∈ K, i = 1, 2, ..., n} (9)

is point separating and additive.

Solution 2.4

(a) Lµ is linear by the linearity of the integral. We need to show that Lµ is bounded. f is
bounded, as f is continuous on K and K is compact. In addition, as µ(K) < ∞, there exists
C ∈ R such that µ(K) = C. Hence

Lµ(f) =
∫

K

f(x)µ(dx)

≤
∫

K

sup
x∈K

|f(x)|µ(dx)

=
∫

K

||f(x)||∞µ(dx)

≤ ||f(x)||∞µ(K)
= ||f(x)||∞C.

We have shown that there exists C ∈ R such that

L(f) ≤ ||f(x)||∞C, ∀f ∈ C(K,R).

So L is bounded.

(b) We start by giving a reminder of the Riesz-Markov-Kakutani representation theorem.

Theorem 1 Riesz-Markov-Kakutani representation theorem Let X be a locally compact
Hausdorff space, and L a positive linear functional on Cc(X). Then there exists a unique
positive Borel measure µ on X such that

L =
∫

X

f(x)µ(dx)

for every f ∈ Cc(X), and which has the following properties for some M containing the Borel
δ−algebra on X:

(1) µ(K) < ∞ for every compact set K ⊂ X

(2) For every E ∈ M , we have µ(E) = inf{µ(V ) : E ⊂ V, V open}
(3) The relation µ(E) = sup{µ(K) : K ⊂ E, Kcompact} holds for every open set E, and for

every E ∈ M with µ(E) < ∞
(4) If E ∈ M , A ⊂ E, and µ(E) = 0, then A ∈ M .

As L is positive linear functional, by Riesz-Markov-Kakutani representation theorem, there
exists a unique measure µ such that the functional L on f is defined as L(f) :=

∫
K

f(x)µ(dx).
Let a sequence of functions fn in C(K,R) converges uniformly to a function f ∈ C(K,R),
we have for any ϵ > 0, there exists a positive integer N such that for all n ≥ N and x ∈ K,
|fn(x) − f(x)|< ϵ. Since K is compact and f is continuous, f is also bounded on K, i.e.,
there exists a constant M such that |f(x)|≤ M for all x ∈ K. Consequently, for all n ≥ N ,
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|fn(x)|≤ |fn(x) − f(x)|+|f(x)|< ϵ + M . This implies |fn(x)| is bounded by ϵ + M for all
n ≥ N and x ∈ K. Let gn(x) = max(|fn(x)|, |f(x)|), we can see gn is a bounded continuous
function on compact set K, hence gn is integrable. Thus we can apply dominated convergence
theorem: If fn(x) ≥ 0, fn(x) converges to f(x) pointwisely for all x ∈ K, and |fn(x)|≤ gn(x)
for all n and x, where gn(x) is integrable, then

lim
n→∞

∫
K

fn(x)µ(dx) =
∫

K

f(x)µ(dx)

So we have
lim

n→∞
L(fn) = L(f)

It proves L is continuous.

(c) Let p and q be distinct points in K. Since they are distinct, there must exist at least one
coordinate where they differ, i.e., pi ̸= qi. Define the function f(x) as follows:

f(x) =
{

1, for all xj ̸= pj

0, for x = p

Now consider function F (f):

F (f)(p) =
n∑

i=1
λif(pi) = 0

F (f)(q) =
n∑

i=1
λif(qi) = λi

Since λi can be non-zero, and consequently, F (f)(p) ̸= F (f)(q). The additivity from F comes
from

F (f+g) =
n∑

i=1
λi(f+g)(xi) =

n∑
i=1

λif(xi)+λig(xi) =
n∑

i=1
λif(xi)+

n∑
i=1

λig(xi) = F (f)+F (g), ∀F ∈ F .
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