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Through this exercise sheet, we let E = Rd, J an interval on R, and denote SigJ : C1
0(J, E) →

T(E) the signature map such that for all X ∈ C1
0(J, E) and we let Sig(M)

J denote the truncated
signature map up to order M : Sig(M)

J (X) = (1, s1, · · · , sM ) ∈ T(M)(E). Let X ∈ C1
0([0, s], E) and

Y ∈ C1
0([s, t], E).

Exercise 3.1 (Signatures)

(a) Let Xt = tx ∈ Rd for all t ∈ [0, 1]. Calculate Sig[0,1](X).

(b) Let X ∈ C1
0([0, T ], E) and X0 = 0. Prove that

Sig[0,1](X)1,2 + Sig[0,1](X)2,1 = Sig[0,1](X)1 · Sig[0,1](X)2. (1)

Solution 3.1

(a)

Sig[0,1](X) = (1, x,
x⊗2

2! , · · · ). (2)

(b) By integration by part, we directly show the equality∫ 1

0
u

(1)
t du

(2)
t +

∫ 1

0
u

(2)
t du

(1)
t =

∫ 1

0
d(u(1) · u(2))t = u

(1)
1 · u

(2)
1 (3)

Exercise 3.2 (Calculate Signatures)

(a) Let X ∈ C1
0([0, 1],R) s.t. Xt = sin(t) for all t ∈ [0, 1]. Calculate Sig(2)

[0,1](X) i.e. the signatures
of X up to order 2.

(b) Let X ∈ C1
0([0, 1],R2) s.t. Xt = (t, sin(t)) for all t ∈ [0, 1]. Calculate Sig(2)

[0,1](X) i.e. the
signatures of X up to order 2.

(c) Let X ∈ C1
0([0, 1],R) and n ∈ N. Calculate

∫ 1
0 tndXt when

(i) Xt = t

(ii) Xt = sin(t)

(d) Prove that

F =
{

C1
0([0, 1],R) ∋ X 7→

n∑
i=1

λi

∫
tidXt ∈ R : ∀λi ∈ R, n ∈ N

}
is a point-separating vector space. C1

0([0, 1],R) is the space of all function f on [0, 1] with
f(0) = 0 and f has continuous derivative.

Solution 3.2
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(a) (
1, sin(1),

∫ 1

0
sin(t) cos(t)dt

)
(4)

(b) (
1, 1, sin(1), 1

2 ,

∫ 1

0
sin(t)dt,

∫ 1

0
t cos(t)dt,

∫ 1

0
sin(t) cos(t)dt

)
(5)

(c) (i)
tn+1

n + 1

∣∣∣1
0

(6)

(ii) ∫ 1

0
tnd sin(t) = sin(t)tn

∣∣∣1
0

+
∫ 1

0
ntn−1d cos(t)

= sin(t)tn
∣∣∣1
0

+
∫ 1

0
ntn−1d cos(t)

= sin(t)tn
∣∣∣1
0

+ n cos(t)tn−1
∣∣∣1
0

−
∫ 1

0
n(n − 1)tn−2d sin(t)

= . . .

(7)

(d) Vector space holds directly from the definition. So we remain to show point-separating. Let
us consider Z ∈ C1

0([0, 1],R) s.t.∫ n∑
i=1

λit
idZt = 0, ∀λi ∈ R, n ∈ N.

An elementary approach is using universal approximation of polynomials. Since Z ′ is continu-
ous on [0, 1], it can be universally approximated by polynomials, and therefore we have∫ 1

0
(Z ′

t)2dt = lim
n→∞

∫ n∑
i=1

λit
idZt = 0. (8)

This implies that Z = 0 because it starts from 0, which completes the proof.
Remark: It worth noticing that this essentially relies on that Z ′ is continuous. But we can
actually make the proof more general by considering function X which are only L-Lipschitz
and starting from 0, and then a more general proof can be done by fourier analysis. Since
sin(mπt) and cos(mπt) for all m ∈ N are uniformly approximated by polynomial on [0, 1].
We have for all m ∈ N ∫

sin(mt)dZt =
∫

cos(mt)dZt = 0 (9)

Then we define a sign measure µ(dt) = Z ′
tdt (Because by Rademacher’s Lipschitz function is

almost everywhere differentiable and here we even know that |Z ′
t| ≤ L almost surely), then

for all m ∈ N ∫
sin(mt)dµ =

∫
cos(mt)dµ = 0. (10)

Then by fourier analysis we know µ = 0 so Z is constant, which is actually 0 because Z(0) = 0.
This proof uses the same idea used in the proof of universal approximation theory of neural
network by G. Cybenko.
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Exercise 3.3 (Controlled ODEs) Consider the controlled ODE: X0 = x ∈ R

dXθ
t = V θ(t, Xθ

t )dt, t ∈ [0, T ]. (11)

(a) Let

at = ∂Xθ
T

∂Xθ
t

. (12)

Prove that
d

dt
at = −∂V θ

∂x
(t, Xθ

t ) · at, aT = 1, (13)

and relate at with Jt,T in the lecture notebook.

(b) Prove that
d

dt
(∂Xθ

t

∂θ
at) = at

∂V θ

∂θ
(t, Xθ

t ), (14)

and
∂Xθ

T

∂θ
= −

∫ 0

T

∂Xθ
T

∂Xθ
t

· ∂V θ

∂θ
(t, Xθ

t )dt. (15)

(c) Is every feedforward neural network a discretization of controlled ODE?

Solution 3.3

(a) We know

at = ∂Xθ
T

∂Xθ
t

= ∂Xθ
T

∂Xθ
t+∆t

·
∂Xθ

t+∆t

∂Xθ
t

= at+∆t ·
∂Xθ

t+∆t

∂Xθ
t

.

(16)

Also we know
Xθ

t+∆t = Xθ
t +

∫ t+∆t

t

V θ(Xθ
s , s)ds (17)

Taking partial derivative on both side we have

∂Xθ
t+∆t

∂Xθ
t

= 1 +
∫ t+∆t

t

∂xV θ(Xθ
s , s)ds (18)

Plug this into (16) we have

at − at+∆t

at+∆t
=
∫ t+∆t

t

∂xV θ(Xθ
s , s)ds. (19)

Let ∆t → 0 we obtain
d

dt
at = −∂V θ

∂x
(t, Xθ

t ) · at (20)

(b)

d

dt
(∂Xθ

t

∂θ
at) = d

dt
(∂Xθ

t

∂θ
) · at + dat

dt
· (∂Xθ

t

∂θ
)

= ∂

∂θ
V θ(Xθ

t , t) · at − ∂V θ

∂x
(t, Xθ

t ) · at · (∂Xθ
t

∂θ
)

= at
∂V θ

∂θ
(t, Xθ

t ).

(21)
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The last equation is because:

∂

∂θ
V θ(Xθ

t , t) = ∂V θ

∂x
(t, Xθ

t ) · (∂Xθ
t

∂θ
) + ∂V θ

∂θ
(t, Xθ

t ). (22)

(c) Yes

Exercise 3.4 (Linear controlled ODE) Let E = Rd, W = Rn. Let X ∈ C1
0([0, T ], E) and let

B : E → L(W ) be a bounded linear map. Consider

dYt = B(dXt)(Yt) (23)

If we denote Bk = B(ek), k = 1, · · · , d then

dYt =
d∑

k=1
Bk(Yt)dXk

t . (24)

Prove that

Yt =
( ∞∑

k=0
B⊗k

)(
Sig[0,t](X)

)
Y0. (25)

This implies that the solution of controlled SDE could be written as a linear function on signature
stream of driving path. This implies that signature stream is a promising feature for controlled
ODE.

Solution 3.4 It follows from Picard’s iteration that

Y n
t =

(
I +

n∑
k=1

B⊗k

∫
t1<···<tk∈[0,t]

dXt1 ⊗ · · · ⊗ dXtk

)
Y0

=
(

I +
n∑

k=1

d∑
i1,··· ,ik=1

Bik · · · Bi1

∫
t1<···<tk∈[0,t]

dXi1
t1

· · · dXik
tk

)
Y0.

(26)

Let the variation of X ∈ C1
0([0, T ], E) denoted by ∥X∥[0,T ], then

∥∥∥∫
t1<···<tk∈[0,t]

dXt1 ⊗ · · · ⊗ dXtk

∥∥∥
E⊗k

≤
∥X∥k

[0,T ]

k! . (27)

Therefore, Y n
t converges to Yt as n → ∞ i.e.

∥Yt − Y n
t ∥W ≤

∑
k>n

∥B∥k
L(E,L(W ))∥X∥k

[0,T ]

k! ≤
∥B∥n+1

L(E,L(W ))∥X∥n+1
[0,T ]

n! → 0, as n → ∞ (28)

and

Yt =
(

I +
∞∑

k=1
B⊗k

∫
t1<···<tk∈[0,t]

dXt1 ⊗ · · · ⊗ dXtk

)
Y0. (29)

In the language of signature, we have that

Yt =
( ∞∑

k=0
B⊗k

)(
Sig[0,t](X)

)
Y0. (30)

This implies that the solution of controlled SDE could be written as a linear function on signature
stream of driving path. This implies that signature stream is a promising feature for controlled
ODE.
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