Mathematics for New Technologies in Finance Solution sheet 3

Through this exercise sheet, we let $E=\mathbb{R}^{d}, J$ an interval on \mathbb{R}, and denote $\operatorname{Sig}_{J}: \mathcal{C}_{0}^{1}(J, E) \rightarrow$ $\mathbf{T}(E)$ the signature map such that for all $X \in \mathcal{C}_{0}^{1}(J, E)$ and we let $\mathbf{S i g}_{J}^{(M)}$ denote the truncated signature map up to order $M: \operatorname{Sig}_{J}^{(M)}(X)=\left(1, \mathbf{s}_{1}, \cdots, \mathbf{s}_{M}\right) \in \mathbf{T}^{(M)}(E)$. Let $X \in \mathcal{C}_{0}^{1}([0, s], E)$ and $Y \in \mathcal{C}_{0}^{1}([s, t], E)$.

Exercise 3.1 (Signatures)

(a) Let $X_{t}=t \mathbf{x} \in \mathbb{R}^{d}$ for all $t \in[0,1]$. Calculate $\operatorname{Sig}_{[0,1]}(X)$.
(b) Let $X \in \mathcal{C}_{0}^{1}([0, T], E)$ and $X_{0}=0$. Prove that

$$
\begin{equation*}
\operatorname{Sig}_{[0,1]}(X)_{1,2}+\operatorname{Sig}_{[0,1]}(X)_{2,1}=\operatorname{Sig}_{[0,1]}(X)_{1} \cdot \operatorname{Sig}_{[0,1]}(X)_{2} \tag{1}
\end{equation*}
$$

Solution 3.1

(a)

$$
\begin{equation*}
\operatorname{Sig}_{[0,1]}(X)=\left(1, \mathbf{x}, \frac{\mathbf{x}^{\otimes 2}}{2!}, \cdots\right) \tag{2}
\end{equation*}
$$

(b) By integration by part, we directly show the equality

$$
\begin{equation*}
\int_{0}^{1} u_{t}^{(1)} d u_{t}^{(2)}+\int_{0}^{1} u_{t}^{(2)} d u_{t}^{(1)}=\int_{0}^{1} d\left(u^{(1)} \cdot u^{(2)}\right)_{t}=u_{1}^{(1)} \cdot u_{1}^{(2)} \tag{3}
\end{equation*}
$$

Exercise 3.2 (Calculate Signatures)

(a) Let $X \in \mathcal{C}_{0}^{1}([0,1], \mathbb{R})$ s.t. $X_{t}=\sin (t)$ for all $t \in[0,1]$. Calculate $\operatorname{Sig}_{[0,1]}^{(2)}(X)$ i.e. the signatures of X up to order 2 .
(b) Let $X \in \mathcal{C}_{0}^{1}\left([0,1], \mathbb{R}^{2}\right)$ s.t. $X_{t}=(t, \sin (t))$ for all $t \in[0,1]$. Calculate $\operatorname{Sig}_{[0,1]}^{(2)}(X)$ i.e. the signatures of X up to order 2.
(c) Let $X \in \mathcal{C}_{0}^{1}([0,1], \mathbb{R})$ and $n \in \mathbb{N}$. Calculate $\int_{0}^{1} t^{n} d X_{t}$ when
(i) $X_{t}=t$
(ii) $X_{t}=\sin (t)$
(d) Prove that

$$
\mathcal{F}=\left\{\mathcal{C}_{0}^{1}([0,1], \mathbb{R}) \ni X \mapsto \sum_{i=1}^{n} \lambda_{i} \int t^{i} d X_{t} \in \mathbb{R}: \forall \lambda_{i} \in \mathbb{R}, n \in \mathbb{N}\right\}
$$

is a point-separating vector space. $\mathcal{C}_{0}^{1}([0,1], \mathbb{R})$ is the space of all function f on $[0,1]$ with $f(0)=0$ and f has continuous derivative.

Solution 3.2

(a)

$$
\begin{equation*}
\left(1, \sin (1), \int_{0}^{1} \sin (t) \cos (t) d t\right) \tag{4}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\left(1,1, \sin (1), \frac{1}{2}, \int_{0}^{1} \sin (t) d t, \int_{0}^{1} t \cos (t) d t, \int_{0}^{1} \sin (t) \cos (t) d t\right) \tag{5}
\end{equation*}
$$

(c) (i)

$$
\begin{equation*}
\left.\frac{t^{n+1}}{n+1}\right|_{0} ^{1} \tag{6}
\end{equation*}
$$

(ii)

$$
\begin{align*}
\int_{0}^{1} t^{n} d \sin (t) & =\left.\sin (t) t^{n}\right|_{0} ^{1}+\int_{0}^{1} n t^{n-1} d \cos (t) \\
& =\left.\sin (t) t^{n}\right|_{0} ^{1}+\int_{0}^{1} n t^{n-1} d \cos (t) \tag{7}\\
& =\left.\sin (t) t^{n}\right|_{0} ^{1}+\left.n \cos (t) t^{n-1}\right|_{0} ^{1}-\int_{0}^{1} n(n-1) t^{n-2} d \sin (t) \\
& =\ldots
\end{align*}
$$

(d) Vector space holds directly from the definition. So we remain to show point-separating. Let us consider $Z \in \mathcal{C}_{0}^{1}([0,1], \mathbb{R})$ s.t.

$$
\int \sum_{i=1}^{n} \lambda_{i} t^{i} d Z_{t}=0, \quad \forall \lambda_{i} \in \mathbb{R}, n \in \mathbb{N}
$$

An elementary approach is using universal approximation of polynomials. Since Z^{\prime} is continuous on $[0,1]$, it can be universally approximated by polynomials, and therefore we have

$$
\begin{equation*}
\int_{0}^{1}\left(Z_{t}^{\prime}\right)^{2} d t=\lim _{n \rightarrow \infty} \int \sum_{i=1}^{n} \lambda_{i} t^{i} d Z_{t}=0 \tag{8}
\end{equation*}
$$

This implies that $Z=0$ because it starts from 0 , which completes the proof.
Remark: It worth noticing that this essentially relies on that Z^{\prime} is continuous. But we can actually make the proof more general by considering function X which are only L-Lipschitz and starting from 0 , and then a more general proof can be done by fourier analysis. Since $\sin (m \pi t)$ and $\cos (m \pi t)$ for all $m \in \mathbb{N}$ are uniformly approximated by polynomial on $[0,1]$. We have for all $m \in \mathbb{N}$

$$
\begin{equation*}
\int \sin (m t) d Z_{t}=\int \cos (m t) d Z_{t}=0 \tag{9}
\end{equation*}
$$

Then we define a sign measure $\mu(d t)=Z_{t}^{\prime} d t$ (Because by Rademacher's Lipschitz function is almost everywhere differentiable and here we even know that $\left|Z_{t}^{\prime}\right| \leq L$ almost surely), then for all $m \in \mathbb{N}$

$$
\begin{equation*}
\int \sin (m t) d \mu=\int \cos (m t) d \mu=0 \tag{10}
\end{equation*}
$$

Then by fourier analysis we know $\mu=0$ so Z is constant, which is actually 0 because $Z(0)=0$. This proof uses the same idea used in the proof of universal approximation theory of neural network by G. Cybenko.

Exercise 3.3 (Controlled ODEs) Consider the controlled ODE: $X_{0}=x \in \mathbb{R}$

$$
\begin{equation*}
d X_{t}^{\theta}=V^{\theta}\left(t, X_{t}^{\theta}\right) d t, \quad t \in[0, T] \tag{11}
\end{equation*}
$$

(a) Let

$$
\begin{equation*}
a_{t}=\frac{\partial X_{T}^{\theta}}{\partial X_{t}^{\theta}} \tag{12}
\end{equation*}
$$

Prove that

$$
\begin{equation*}
\frac{d}{d t} a_{t}=-\frac{\partial V^{\theta}}{\partial x}\left(t, X_{t}^{\theta}\right) \cdot a_{t}, \quad a_{T}=1 \tag{13}
\end{equation*}
$$

and relate a_{t} with $J_{t, T}$ in the lecture notebook.
(b) Prove that

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial X_{t}^{\theta}}{\partial \theta} a_{t}\right)=a_{t} \frac{\partial V^{\theta}}{\partial \theta}\left(t, X_{t}^{\theta}\right) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial X_{T}^{\theta}}{\partial \theta}=-\int_{T}^{0} \frac{\partial X_{T}^{\theta}}{\partial X_{t}^{\theta}} \cdot \frac{\partial V^{\theta}}{\partial \theta}\left(t, X_{t}^{\theta}\right) d t \tag{15}
\end{equation*}
$$

(c) Is every feedforward neural network a discretization of controlled ODE?

Solution 3.3

(a) We know

$$
\begin{align*}
a_{t}=\frac{\partial X_{T}^{\theta}}{\partial X_{t}^{\theta}} & =\frac{\partial X_{T}^{\theta}}{\partial X_{t+\Delta t}^{\theta}} \cdot \frac{\partial X_{t+\Delta t}^{\theta}}{\partial X_{t}^{\theta}} \\
& =a_{t+\Delta t} \cdot \frac{\partial X_{t+\Delta t}^{\theta}}{\partial X_{t}^{\theta}} \tag{16}
\end{align*}
$$

Also we know

$$
\begin{equation*}
X_{t+\Delta t}^{\theta}=X_{t}^{\theta}+\int_{t}^{t+\Delta t} V^{\theta}\left(X_{s}^{\theta}, s\right) d s \tag{17}
\end{equation*}
$$

Taking partial derivative on both side we have

$$
\begin{equation*}
\frac{\partial X_{t+\Delta t}^{\theta}}{\partial X_{t}^{\theta}}=1+\int_{t}^{t+\Delta t} \partial_{x} V^{\theta}\left(X_{s}^{\theta}, s\right) d s \tag{18}
\end{equation*}
$$

Plug this into we have

$$
\begin{equation*}
\frac{a_{t}-a_{t+\Delta t}}{a_{t+\Delta t}}=\int_{t}^{t+\Delta t} \partial_{x} V^{\theta}\left(X_{s}^{\theta}, s\right) d s \tag{19}
\end{equation*}
$$

Let $\Delta t \rightarrow 0$ we obtain

$$
\begin{equation*}
\frac{d}{d t} a_{t}=-\frac{\partial V^{\theta}}{\partial x}\left(t, X_{t}^{\theta}\right) \cdot a_{t} \tag{20}
\end{equation*}
$$

(b)

$$
\begin{align*}
\frac{d}{d t}\left(\frac{\partial X_{t}^{\theta}}{\partial \theta} a_{t}\right) & =\frac{d}{d t}\left(\frac{\partial X_{t}^{\theta}}{\partial \theta}\right) \cdot a_{t}+\frac{d a_{t}}{d t} \cdot\left(\frac{\partial X_{t}^{\theta}}{\partial \theta}\right) \\
& =\frac{\partial}{\partial \theta} V^{\theta}\left(X_{t}^{\theta}, t\right) \cdot a_{t}-\frac{\partial V^{\theta}}{\partial x}\left(t, X_{t}^{\theta}\right) \cdot a_{t} \cdot\left(\frac{\partial X_{t}^{\theta}}{\partial \theta}\right) \tag{21}\\
& =a_{t} \frac{\partial V^{\theta}}{\partial \theta}\left(t, X_{t}^{\theta}\right)
\end{align*}
$$

The last equation is because:

$$
\begin{equation*}
\frac{\partial}{\partial \theta} V^{\theta}\left(X_{t}^{\theta}, t\right)=\frac{\partial V^{\theta}}{\partial x}\left(t, X_{t}^{\theta}\right) \cdot\left(\frac{\partial X_{t}^{\theta}}{\partial \theta}\right)+\frac{\partial V^{\theta}}{\partial \theta}\left(t, X_{t}^{\theta}\right) \tag{22}
\end{equation*}
$$

(c) Yes

Exercise 3.4 (Linear controlled ODE) Let $E=\mathbb{R}^{d}$, $W=\mathbb{R}^{n}$. Let $X \in \mathcal{C}_{0}^{1}([0, T], E)$ and let $B: E \rightarrow \mathbf{L}(W)$ be a bounded linear map. Consider

$$
\begin{equation*}
d Y_{t}=B\left(d X_{t}\right)\left(Y_{t}\right) \tag{23}
\end{equation*}
$$

If we denote $B^{k}=B\left(e_{k}\right), k=1, \cdots, d$ then

$$
\begin{equation*}
d Y_{t}=\sum_{k=1}^{d} B^{k}\left(Y_{t}\right) d X_{t}^{k} \tag{24}
\end{equation*}
$$

Prove that

$$
\begin{equation*}
Y_{t}=\left(\sum_{k=0}^{\infty} B^{\otimes k}\right)\left(\mathbf{S i g}_{[0, t]}(X)\right) Y_{0} \tag{25}
\end{equation*}
$$

This implies that the solution of controlled SDE could be written as a linear function on signature stream of driving path. This implies that signature stream is a promising feature for controlled ODE.

Solution 3.4 It follows from Picard's iteration that

$$
\begin{align*}
Y_{t}^{n} & =\left(I+\sum_{k=1}^{n} B^{\otimes k} \int_{t_{1}<\cdots<t_{k} \in[0, t]} d X_{t_{1}} \otimes \cdots \otimes d X_{t_{k}}\right) Y_{0} \\
& =\left(I+\sum_{k=1}^{n} \sum_{i_{1}, \cdots, i_{k}=1}^{d} B^{i_{k}} \cdots B^{i_{1}} \int_{t_{1}<\cdots<t_{k} \in[0, t]} d X_{t_{1}}^{i_{1}} \cdots d X_{t_{k}}^{i_{k}}\right) Y_{0} . \tag{26}
\end{align*}
$$

Let the variation of $X \in \mathcal{C}_{0}^{1}([0, T], E)$ denoted by $\|X\|_{[0, T]}$, then

$$
\begin{equation*}
\left\|\int_{t_{1}<\cdots<t_{k} \in[0, t]} d X_{t_{1}} \otimes \cdots \otimes d X_{t_{k}}\right\|_{E^{\otimes k}} \leq \frac{\|X\|_{[0, T]}^{k}}{k!} \tag{27}
\end{equation*}
$$

Therefore, Y_{t}^{n} converges to Y_{t} as $n \rightarrow \infty$ i.e.

$$
\begin{equation*}
\left\|Y_{t}-Y_{t}^{n}\right\|_{W} \leq \sum_{k>n} \frac{\|B\|_{\mathcal{L}(E, \mathcal{L}(W))}^{k}\|X\|_{[0, T]}^{k}}{k!} \leq \frac{\|B\|_{\mathcal{L}(E, \mathcal{L}(W))}^{n+1}\|X\|_{[0, T]}^{n+1}}{n!} \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
Y_{t}=\left(I+\sum_{k=1}^{\infty} B^{\otimes k} \int_{t_{1}<\cdots<t_{k} \in[0, t]} d X_{t_{1}} \otimes \cdots \otimes d X_{t_{k}}\right) Y_{0} \tag{29}
\end{equation*}
$$

In the language of signature, we have that

$$
\begin{equation*}
Y_{t}=\left(\sum_{k=0}^{\infty} B^{\otimes k}\right)\left(\mathbf{S i g}_{[0, t]}(X)\right) Y_{0} \tag{30}
\end{equation*}
$$

This implies that the solution of controlled SDE could be written as a linear function on signature stream of driving path. This implies that signature stream is a promising feature for controlled ODE.

References

[1] Ilya Chevyrev and Andrey Kormilitzin. A primer on the signature method in machine learning. arXiv preprint arXiv:1603.03788, 2016.
[2] Terry J Lyons, Michael Caruana, and Thierry Lévy. Differential equations driven by rough paths. Springer, 2007.

