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Exercise 6.1 (Bayesian optimization)

(a) Recall the definition of prior, likelihood, posterior, and evidence distributions in bayesian
statistics.

(b) Consider linear model on R : Y ∼ θX + Z, θ ∼ N (0, 1), Z ∼ N (0, 1) and θ independent with
X. Compute pθ(y | x) and p(θ | x, y). Prove that maximizing the posterior p(θ | x, y) is
exactly doing Ridge regression (fix λ here).

(c) Consider Lasso regression, what is the prior under Bayesian perspective? Please calculate the
posterior under this prior.

(d) Would you expect a sparser weight or denser weight using Lasso regression instead of Ridge
regression.

Solution 6.1

(a) Posterior = Likelihood * Prior / Evidence

(b) See the proof here.

(c) Suppose we have data points yi = β0 +
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The prior for β follows Laplace distribution( also known as double-exponential distribution)
with a zero mean and common scale parameter b : p(β) = (1/2b) exp(−|β|/b). Multiplying
the prior distribution with the likelihood we get the posterior distribution
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(d) Sparser for Lasso.

Exercise 6.2 (Implied volatility) The Black-Scholes formula provides a relationship between
the price of a European Call option C(K, T ) and volatility σ(K, T ) for fixed price of underlying S0,
strike K, and maturity T . It is an important transformation in Finance to calculate from C(K, T )
the implied volatility σ(K, T ). Proceed in the following steps:

• Define a Gamma prior on implied volatility.

• Define a likelihood, which predicts the price given an implied volatility.

• Construct a posterior via Bayes formula and sample from it via Langevin dynamics. Interpret
the resulting algorithm from the perspective of stochastic gradient descent.

Solution 6.2
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• Assume π(σ) = σα−1exp(−βσ)βα

Γ(α) , δ > 0

• Denote the call price calculated using Black-Scholes formula based on the implied volatility(σ)
as C(σ). Then if the market price is assumed to follow a log-normal distribution, we have the
likelihood:

L(σ | C(K, T )) = 1
σ

√
2π

exp(−(ln(C(K, T ) − ln(C(σ)))2

2σ2 ) (3)

• Using Bayes formula, we have the posterior distribution

π(σ | C(K, T )) ∝ L(σ | C(K, T ))π(σ) (4)

• Define learning rate η and noise term η1/2εt, iterative update implied volatility

σt+1 = σt − η∇(−log(π(σ | C(K, T ))) + η1/2εt (5)

This algorithm leverages Bayesian statistics to estimate the implied volatility of a call option by
incorporating prior knowledge (through the Gamma prior) and the observed market price (through
the likelihood). Langevin dynamics create a stochastic process that eventually converges to samples
from the target posterior distribution. It isn’t strictly a descent method, it shares some similarities.
The negative log-posterior function acts lie a loss function, and the noise term introduces randomness
to explore the space of possible volatilities.

References
[1] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements

of statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

Updated: April 16, 2024 2 / 2


