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Exercise 7.1 (Stochastic Descent) Recall the calculation of Implied volatility using Bayes
formula from Exercise sheet 6. Now we want to calculate the implied volatility σ(K, T ) from
C(K, T ) using neural network. Proceed in the following steps:

• Define a neural network fθ which takes as input the option price C(K, T ), the current price
S0, the strike price K, and the maturity T . The output will be the implied volatility σ(K, T ).

• Define a loss function L which calculates the difference between the actual price C(K, T ) and
fθ(C(K, T ), S0, K, T ) inserted in the Black-Scholes formula.

• Run a gradient descent.

Solution 7.1 See notebook at end of the week.

Exercise 7.2 (Breeden-Litzenberger formula)

(a) Is there always a positive implied volatility σimp related to the option price? If yes, prove it.
Otherwise, on which price interval there is always a positive implied volatility σimp related to
the option price?

(b) Prove the Breeden-Litzenberger formula:

∂2
KC(T, K)dK = law(ST )(dK). (1)

(c) Discretize the Breeden-Litzenberger formula and link it with Butterfly spreads.

Solution 7.2

(a) Since
∂σC(T, K) = N ′(d1)

√
T > 0 (2)

we only need to analyze the boundary:

lim
σ→0

C(T, K) = (S0 − K)+ (3)

and
lim

σ→∞
C(T, K) = S0 (4)

(b)

∂2
KC(T, K) = ∂2

K

∫
(S − K)+f(S, T )dS

= ∂K

∫ ∞

K

−f(S, T )dS = f(K, T )
(5)

(c) Let K1 < K2 < K3 Then

C(T, K1) + C(T, K3) − 2C(T, K2) (6)

is exactly Butterfly spread.

Updated: April 24, 2024 1 / 2



Mathematics for New Technologies in Finance, FS 2024 Solution sheet 7

Exercise 7.3 (Dupire formula) Assume the following local volatility model:

dSt = σ(t, St)StdWt. (7)

(a) If σ(t, St) = σSβ
t , for which value of β, the market has leverage effect (the volatility increases

when the stock price goes down), which is empirically observed.

(b) Let Vt be the fair price of an European payoff h(ST ). Prove the backward Kolmogorov
equation:

∂tVt + 1
2σ(S, t)2S2∂2

SSVt = 0 (8)

(c) Let fS
T be the probability density function of ST , prove the forward Kolmogorov equation

(Fokker-Planck equation):

∂T f(S, T ) = 1
2∂2

S

(
σ(S, T )2S2f(S, T )

)
(9)

(d) Prove by Fokker-Planck equation the Dupire formula:

σ2(K, T ) = ∂T C(T, K)
1
2 K2∂2

KC(T, K)
(10)

where C(T, K) is the European call option price of maturity T and strike K.

Solution 7.3

(a) β < 0

(b) By Ito formula we have

dV (t, St) = ∂tV (t, St)dt + ∂SV (t, St)dSt + 1
2∂2

SSV (t, St)σ(t, St)2S2
t dt (11)

Since Vt(St) is a martingale, terms in front of dt must be 0 which completes the proof.

(c) Since the local volatility model is Markov, we can directly apply the Fokker-Plank equation
to it and obtain the result.

(d)

∂T C(T, K) = ∂T

∫
(S − K)+f(S, T )dS

=
∫

(S − K)+∂T f(S, T )dS

=
∫

(S − K)+
1
2∂2

S

(
σ(S, T )2S2f(S, T )

)
dS

= 1
2σ(K, T )2K2f(K, T )

= 1
2σ(K, T )2K2∂2

KC(T, K).

(12)
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