Mathematics for New Technologies in Finance Solution sheet 8

Through this exercise sheet, we let $E=\mathbb{R}^{d}, J$ an interval on \mathbb{R}, and denote $\operatorname{Sig}_{J}: \mathcal{C}_{0}^{1}(J, E) \rightarrow$ $\mathbf{T}(E)$ the signature map such that for all $X \in \mathcal{C}_{0}^{1}(J, E)$.

Exercise 8.1 (Signatures and reservoirs computing)

(a) Let $X \in \mathcal{C}_{0}^{1}\left([0, T], \mathbb{R}^{n}\right)$ satisfying the dynamic:

$$
\begin{equation*}
d X_{t}=\sum_{k=1}^{m} V_{k}\left(X_{t}\right) d W_{t}^{k}, \quad X_{t} \in \mathbb{R}^{n}, W_{t} \in \mathbb{R}^{m}, V^{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

where $\left(W_{t}\right)_{t=0}^{\infty}$ is a Brownian motion. Prove that

$$
\begin{equation*}
X_{t}=\sum_{d=0}^{\infty} \sum_{i_{1}, \cdots, i_{d}=1}^{n}\left(\int_{0 \leq t_{1} \leq \cdots \leq t_{d} \leq t} d W_{t_{1}}^{i_{1}} \cdots d W_{t_{d}}^{i_{d}}\right) V^{i_{d}} \cdots V^{i_{1}}\left(X_{0}\right) \cdot X_{0} \tag{2}
\end{equation*}
$$

where

$$
V f(x)=d f(x) \cdot V(x)
$$

(b) Rewrite (2) with signature in the form of the following:

$$
\begin{equation*}
X_{t}=\left\langle\mathbf{R}, \operatorname{Sig}_{[0, t]}(W)\right\rangle X_{0} \tag{3}
\end{equation*}
$$

and express the readout \mathbf{R} with $\left(V^{k}\right)_{k=1}^{m}$ (notice that \mathbf{R} depends on X_{0}).
(c) Relate (3) with reservoirs computing.

Solution 8.1

(a)

$$
\begin{equation*}
X_{t}=X_{0}+\sum_{i=0}^{d} \int_{0}^{t} V_{i}\left(X_{s}\right) d W^{i}(s) \tag{4}
\end{equation*}
$$

By iterating using Picard iteration we can get

$$
\begin{equation*}
X_{t}=\sum_{d=0}^{\infty} \sum_{i_{1}, \cdots, i_{d}=1}^{n}\left(\int_{0 \leq t_{1} \leq \cdots \leq t_{d} \leq t} d W_{t_{1}}^{i_{1}} \cdots d W_{t_{d}}^{i_{d}}\right) V^{i_{d}} \cdots V^{i_{1}}\left(X_{0}\right) \cdot X_{0} \tag{5}
\end{equation*}
$$

(b) The Signature of a bounded variation path W over the interval $[0, t]$ is the tensor sequence

$$
\begin{equation*}
\operatorname{Sig}_{[0, t]}(W):=\int_{0 \leq t_{1} \leq \cdots \leq t_{d} \leq t} d W_{t_{1}}^{i_{1}} \cdots d W_{t_{d}}^{i_{d}} \tag{6}
\end{equation*}
$$

Then we can express

$$
\begin{equation*}
X_{t}=\sum_{d=0}^{\infty} \sum_{i_{1}, \cdots, i_{d}=1}^{n} \operatorname{Sig}_{[0, t]}(W) V^{i_{d}} \ldots V^{i_{1}}\left(X_{0}\right) \cdot X_{0} \tag{7}
\end{equation*}
$$

(c) This explains that any solution can be represented, up to a linear readout, by a universal reservoir, namely signature.

Exercise 8.2 In Exercise 8.1, denote the dimension of state space by N and the number of Brownian motion by d
(a) Choose a dimension N and some random matrices A_{1}, \ldots, A_{d}, then consider the Taylor expansion. Look at the solution of this system and describe their relation to signature. Can we express all signature components from this system?
(b) Choose a dimension N and some random NN vector fields of type $\sigma\left(A_{1} .+b_{1}\right), \ldots, \sigma\left(A_{d} .+b_{d}\right)$. Consider a learning task $u \mapsto \sup (u()$.$) and solve the regression problem on path space$ (Lipschitz functions) by a regression.

Solution 8.2

(a) Let $V_{i}(X)=A_{i} X, X_{t} \in \mathbb{R}^{n}$, we have the new dynamic:

$$
\begin{equation*}
d Z_{t}=\sum_{i=1}^{d} A_{i} Z_{t} d W^{i}(t) \tag{8}
\end{equation*}
$$

Then we have the solution

$$
\begin{equation*}
Z_{t}=\sum_{d=0}^{\infty} \sum_{i_{1}, \cdots, i_{d}=1}^{n}\left(\int_{0 \leq t_{1} \leq \cdots \leq t_{d} \leq t} d W_{t_{1}}^{i_{1}} \cdots d W_{t_{d}}^{i_{d}}\right) A_{i_{d}} \cdots A_{i_{1}} \cdot Z_{0} \tag{9}
\end{equation*}
$$

We cannot express all signature components from this system.
(b) Similarly, the new dynamic becomes:

$$
\begin{equation*}
d Z_{t}=\sum_{i=1}^{d} \sigma\left(A_{i} Z_{t}+b_{i}\right) d W^{i}(t) \tag{10}
\end{equation*}
$$

We want to minimize the loss function

$$
\begin{equation*}
L=\frac{1}{N} \sum_{1}^{N} l\left(X_{t}, Z_{t}\right) \tag{11}
\end{equation*}
$$

References

[1] Ilya Chevyrev and Andrey Kormilitzin. A primer on the signature method in machine learning. arXiv preprint arXiv:1603.03788, 2016.
[2] Terry J Lyons, Michael Caruana, and Thierry Lévy. Differential equations driven by rough paths. Springer, 2007.

