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Background. Associative recall measures a generative model’s capability to remember relevant
information from past input. This requires storing information in hidden states and is therefore
subject to information-theoretic bounds. For transformers, these bounds depend on the size of the
context window and also on the choice of attention mechanism. Here, we consider a stylized recall
task and ask for a constructive solution. The didactical goal is to get familiar with query, key, and
value computations.

Definition. Given a sequence of key-value pairs and a key, the associative recall task is to output
the value corresponding to this key. Example:

A6B8C3B → 8

Accordingly, a correct input-output pair (x, y) for this example is

x = A6B8C3B? y = A6B8C3B8

Exercise 9.1 Are transformers able to perfectly solve the associative recall task, for recall sequences
with fixed length?

Hint. As the focus is on the attention mechanism, you may for simplicity choose arbitrary
functions for token embeddings, position embeddings, and feed-forward networks. Moreover, you
may ignore layer normalization. Finally, it might be helpful to note that a transformer block whose
attention layer has all-zero weights is just a feed-forward network.

Solution 9.1

Token and Position Embedding. Let us consider{
e0, . . . , e9, eA, . . . , eZ , e?

}
as an orthonormal basis of a real vector space for token and position embeddings. Namely, we
define these embeddings such that the input sequence A6B8C3B? becomes

X :=

eA e6 eB e8 eC e3 eB e?
e8 e7 e6 e5 e4 e3 e2 e1
0 0 0 0 0 0 0 0

⊤

∈ Rn×d,

where n = 8 and d = 3 × (10 + 26 + 1) = 111. The first row will be used for input, the second row
for indexing, and the third row for output.
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First Transformer Block. This block prepares the second row for alphabetic lookup. For
suitably defined weight matrices WQ, WK , WV , we obtain the following queries, keys, and values:

XWQ =

 0 0 0 0 0 0 0 0
e8 e8 e6 e6 e4 e4 e2 e2
0 0 0 0 0 0 0 0

⊤

∈ Rn×d,

XWK =

 0 0 0 0 0 0 0 0
e8 e7 e6 e5 e4 e3 e2 e1
0 0 0 0 0 0 0 0

⊤

∈ Rn×d,

XWV =

 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

eA e6 eB e8 eC e3 eB e?

⊤

∈ Rn×d.

Indeed, this can be achieved using query weights WQ which nullify the first and last rows and
replace all ek with odd k by ek+1, using key weights WK which merely nullify the first and last
rows, and using value weights WV which copy the first row into the last one and then nullify the
first and second rows. The resulting masked attention matrix is

A := ρ
(
(QWQ)(KWK)⊤/

√
d
)

=



1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0


∈ Rn×n.

The output of the attention head is therefore

AXWV =

 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

eA eA eB eB eC eC eB eB

⊤

∈ Rn×d,

and the output of the skip connection is

AXWV =

eA e6 eB e8 eC e3 eB e?
e8 e7 e6 e5 e4 e3 e2 e1
eA eA eB eB eC eC eB eB

⊤

∈ Rn×d.

Using a feed-forward network with skip connection, we add the third row to the second row whenever
the number in the second row is odd. We thus obtain the following output of the first transformer
block, which is simultaneously the input for the second transformer block and is again denoted by
X:

X :=

eA e6 eB e8 eC e3 eB e?
e8 e7 + eA e6 e5 + eB e4 e3 + eC e2 e1 + eB

0 0 0 0 0 0 0 0

⊤

∈ Rn×d.

Second Transformer Block. The second transformer block performs the lookup operation. For
suitably defined weight matrices WQ, WK , WV , different from the above ones with the same name,
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we obtain the following queries, keys, and values:

XWQ =

 0 0 0 0 0 0 0 0
e8 e7 + eA e6 e5 + eB e4 e3 + eC e2 eB

0 0 0 0 0 0 0 0

⊤

∈ Rn×d,

XWK = XWQ,

XWV =

 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

eA e6 eB e8 eC e3 eB 0

⊤

∈ Rn×d.

Indeed, this can be achieved using equal query and key weights WQ = WK which nullify the first
row, last row, and all vectors e1, and using value weights WV which copy the first into the last row,
delete all vectors e?, and nullify the first and second rows. The resulting masked attention matrix is

A := ρ
(
(QWQ)(KWK)⊤/

√
d
)

=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 λ 0 0 0 1 − λ


∈ Rn×n,

where λ = e1/
√

d

e1/
√

d+e2/
√

d
∈ (0, 1). The output of the attention head is therefore

AXWV =

 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

eA e6 eB e8 eC e3 eB λe8

⊤

∈ Rn×d,

and the output of the skip connection is

AXWV =

eA e6 eB e8 eC e3 eB e?
e8 e7 + eA e6 e5 + eB e4 e3 + eC e2 e1 + eB

eA e6 eB e8 eC e3 eB λe8

⊤

∈ Rn×d.

A suitable feed-forward network with skip connection implements the identity operation. Then, the
output of the second transformer block, and the input for the transformer’s output layers, is the
above matrix.

Output Layers. A linear read-out extracts the third row and enforces deterministic output by
setting the so-called temperature to zero. This amounts to multiplication by ∞ or some very high
floating point number, resulting in

∞ ×
(
eA e6 eB e8 eC e3 eB e8

)⊤ ∈ R̄n×37.

These are logits for a categorical distribution which generates the desired deterministic output.

Exercise 9.2 (Memory of Signature transforms) Notice the analogy to the first example:

(a) Given a C1 trajectory u : [0, 1] → R2. How many and which signature components do you
need to know to reconstruct the area swept over by the vector from u(0) to u(t) on the interval
[0, 1].
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(b) Let us assume that the first component is time, i.e. u1(t) = t for t ∈ [0, 1]. Which signature
components do you need to know (possibly countably many) to reconstruct u2(t) − u2(0)
perfectly for every t ∈ [0, 1]. If you can only store finitely many signature components: which
ones to choose to do an approximate reconstruction and what would be a criterion for the
approximation quality (Notice that u is C1 and that one can make a Fourier expansion of
u2(t) − u(0)).

Solution 9.2

(a) We need Sig12(u) and Sig21(u).

(b) First expand u̇2 with Fourier expansion, then using Taylor expansion for the coefficients.

∞∑
u=0

∫
exp(i∆2π)u̇2(s)ds =

∞∑
k=0

1
k! (i2πe)k

∫ 1

0

∆k

k! du2(s) (1)

There are other criterions can be used for the approximation quality depending on the data.
In this problem, we use squared L2 norm for error estimation.
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