Chapter 1: Large deviations in Coroner's regime
Outlive 1) First observations
2) Cranmer's theorem
3) Behavior under the condition al law
4) Local estimates and the local central limit theorem

In probability theory many theorems concem "typical events", which have probability 1 or tending to ow Range deviations concern "atypical events" whose probability tends to O. Typical questions then are:

- How fart is the convergence (rake of de cay)?
- Given this at ypical evict, who ace typical events of the system sunder the conditional law?
 typical path?

Here vie foams on the case of randan walks. Let $\left(X_{n}\right)_{n \geqslant 1}$ be in R-valued rv. with $\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Set $S_{n}=X_{1}+\cdots+x_{n}$. We (enow that $\frac{S_{n}}{n} \underset{n \rightarrow 0}{a s} \mathbb{m}\left[x_{3}\right.$ and $\frac{\left.S_{n}-n \mathbb{E}[x]\right]}{\sqrt{n \operatorname{vac}(x, 1)}} \underset{n \rightarrow \infty}{(1)} N(0,1)$
$m s$ "Typically Ale deviations of S_{n} arcane $n\left[E\left[x_{1}\right]\right.$ are of order \sqrt{n} "
Fut for freed $a \in B$, what can we say about $\mathbb{P}\left(S_{n}>a n\right), ~ P\left(S_{n}=a n\right)$?
local pobabability
What can we say about $\left(S_{11}, S_{n}\right)$ conditionally given $\left\{S_{n}>a n \xi\right.$ or $\left\{S_{n}=a n\right\}$?
(when thesereveuls have >0 probability).

1) First observations
 we have $B\left(S_{n}>a n\right) \longrightarrow 1$ is $a<\mathbb{E}[x, 1]$

$$
\longrightarrow \frac{1}{2} \text { is } a=\circledast[x,] \text {. }
$$

Now assume that $a>\mathbb{E}\left[x_{1}\right]$

- Assume that X_{1} is $N(0,1)$. Then $S_{n} \stackrel{(1)}{\stackrel{1}{2}} N(0, n)$ and for $a>0$:
$V S\left(S_{n}>n a\right)=\frac{1}{\sqrt{2 \pi}} \int_{a \sqrt{n}}^{\infty} e^{-y^{2} / 2} d y \sim \frac{1}{a \sqrt{\pi \pi n}} e^{-n a^{2} / 2}$, so $P\left(S_{n}>n a\right)=e^{-n \frac{a^{2}}{2}+o(n)}$.
A similar computation shows that $\forall \varepsilon>0, B\left(S_{n} \in\left(a_{n}, a_{n}+n^{2}\right)\right) \sim \mathbb{n} P\left(S_{n}\right) a_{n 1}$, which shows that for $B\left(\cdot \mid S_{n}>a n\right), S_{n}$ is of order an
- If $B\left(X_{1}>a\right) \in(0,1)$, then $\mathbb{B}\left(S_{n}>a n\right) \geqslant \mathbb{B}\left(X_{1}>e_{1}, \ldots, x_{n}>a\right)=\mathbb{P}\left(X_{1}>a\right)^{k}$,
so $\mathbb{P}\left(S_{n}>a_{n}\right)$ cannot decay fester then exponentially.
- Assume that $-X_{1} \stackrel{(\alpha)}{=} X_{1}$, that X_{1} has a density and $P\left(X_{1}>x\right) \geqslant c x^{-\alpha}$ for $x \geqslant 1$ for some $c, \alpha>0$. Then $\mathbb{B}\left(S_{n}>a n\right) \geqslant B\left(X_{n}>a n\right) B\left(S_{n-1}>0\right) \geqslant C\left(a_{n}\right)^{-\alpha} \cdot \frac{1}{2}$
This $B\left(S_{n}>a n\right)$ does not decay exponentially fast.
If $\mathbb{P}\left(X_{1}>x\right) \sim \exp (-\sqrt{x})$ the sain holds (and X_{1} has finite moments of all orders)
Conclusion: it is not always true that $\mathbb{S}\left(S_{n}>a n\right)$ decays exponentially fort

2) Gamer's theorem.

Assumptions X_{1} is not constant and $\forall t \in \mathbb{P}, M(t)=\mathbb{E}\left[e^{t x_{1}}\right]<\infty$. (\Leftrightarrow) [Gamer condition $]$

We stall see that $\mathbb{P}\left(S_{n}>\right.$ an) decays exponentially fast for $E\left[X_{1}\right]<a<\sup S_{\text {upper }} X_{1}$ (Support x_{1} istle smallest dosed set $F \subset R$ such that $\mathbb{P}(X, \in F)=1$, in particular $\mathbb{S}\left(S_{n}>a n\right)=0$ for a> sup Support $\left.X_{1}\right)$.

The main idea(tad is "exponential kiting": by (k) for every $\theta \in B$ va can consider a rr v $X_{1}{ }_{1}$ with law given by $\mathbb{E}\left[f\left(x_{1}^{\theta}\right)\right]=\mathbb{E}\left[f\left(x_{1}\right) \frac{e^{\theta x_{1}}}{M(\theta)}\right]$ for $8 \geqslant 0$ measurable

Observe that for all $\partial>0, X_{1}$ satisfies Cranmer's condition

Set $\left(x_{i}^{2}\right)_{i \geqslant 1}$ be ind and set $S_{n}^{2}=x_{1}^{2}+\cdots+x_{n}^{2}$. By definition one has:
Proposition For $\& \geqslant 0$ measurable,

In pacticula, $\mathbb{P}\left(S_{n}>a n\right)=M(\theta)^{n} \Phi\left[\mathbb{1}_{S_{n}^{\theta}>a n} e^{-\theta S_{n}^{\theta}}\right]$

Theorem (Cranmer) $F i x a \in\left(\boxminus\left[x_{1}\right]\right.$, sup Suppor $\left(x_{1}\right)$).
There exits $\theta(a)>0$ such that $\Phi\left[x_{1}^{0(a)}\right]=a$, and $B\left(S_{n}>a n\right)=e^{-I(\cos n+o(u)}$ with $I(e)=\theta(e) a-\ln M H((a))$

Intuition: the optimal strategy to achieve S_{n} san is that "each X_{j} contributes a lith bit" end "Fits itrofl a lithe bt "in order to favor taking lager values. $e^{-I(\alpha)}$ repreants in some sene the "cost" of this tilt for every $;$, so $e^{-I(\alpha) n}$ is the total cost

We first check the existence of $\theta(a)$. For $t \in \mathbb{B}$ set $L(t)=\ln M(t)=\ln \in\left[e^{t x_{1}}\right]$.
Obsave that $L^{\prime}(t)=\frac{M^{\prime}(t)}{M(t)}=\frac{\mathbb{E}\left[x_{1} e^{t x_{1}}\right]}{M(t)}$, so $E\left[X_{1}^{\theta}\right]=\frac{\mathbb{E}\left[X_{1} e^{8 x_{1}}\right]}{M(\theta)}=L^{\prime}(\theta)$
End of lecture 1
Lemme L is convex
(I the \log of a convex function is not always convex, fa example x^{2})

Proof take $t_{1}, t_{2} \in \mathbb{R}$ and $p \in[0,1]$. Using Holders inequality:

$$
\begin{gathered}
L\left(p t_{1}+(1-p) t_{2}\right)=\ln \mathbb{E}\left[\left(e^{t_{1} x_{1}}\right)^{p}\left(e^{t_{2} x_{1}}\right)^{1-p}\right] \leq \ln \mathbb{E}\left[e^{t_{1} x_{1}}\right]^{p} \cdot \mathbb{E}\left[e^{t_{2} x_{2}}\right]^{1-p}=p^{2}\left(t_{1}\right)+(1-p) L\left(t_{2}\right) \\
\infty
\end{gathered}
$$

Proof of existence of $g(a)$: Cowrider $f(\theta)=a \theta-L(\theta)$. We have $f(0)=0, f$ is continuous and $\lim _{\theta \rightarrow \infty} g<0$ Indeed, tale $a<b<\sup$ Support x_{1}. Then

$$
M(\theta) \geqslant E\left[e^{\theta x_{1}} 1_{x \geqslant b}\right] \geqslant e^{\theta b} \underbrace{P\left(x_{1} \geqslant 6\right)}_{\geqslant 0} \text { so } L(\theta) \geqslant \theta b+\ln \mathbb{B}(\theta \geqslant b)
$$

This $\delta(\theta) \leqslant \theta(\underbrace{a-b+\ln B\left(x_{1} \geqslant b\right)})$

$$
\text { <o for } \theta \text { sufficiently laue }
$$

Thus, since f is concave, letting $g(a)$ be the point where $\&$ reaches it suprenume, we get $\left.\delta^{\prime} \mid \theta(a)\right)=0$, which gives $L^{\prime}(\theta(a))=a$.

Remade The previous proof shows that $I(a)=f(\theta(a))=\sup (a \theta-L(\theta))$, which in partincluer implies that I is increasing. $\theta \geqslant 0$

End of the proof of the theorem
Upper bound: J must write $\mathbb{P}\left(S_{n}>a n\right)=\mathbb{B}\left(e^{g(a) S_{n}}>e^{\theta(a) a n}\right) \leqslant e^{-\theta(e) e n} M(\theta a) \|^{n}=e^{-n(\theta(a) e-\ln M(\theta(a)))}$.
Lower bound : Using the proposition, write (with $g=8(a)$ to simplify notation)

$$
\begin{aligned}
\mathbb{B}\left(S_{n}>a n\right) & =M(\theta)^{n} E\left[\mathbb{1}_{S_{n}^{\theta}>a n} e^{-\theta S_{n}^{\theta}}\right] \\
& \geqslant M \cos ^{n} \text { E }\left[\mathbb{1}_{\text {en }}<S_{n}^{\theta}<a n+\sqrt{n} e^{-\theta S_{n}^{\theta}}\right] \\
& \geqslant M(\theta)^{n} e^{-\theta a n-\theta \sqrt{n}} \mathbb{B}\left(a n<S_{n}^{\theta}<a n+\sqrt{n}\right)
\end{aligned}
$$

But $\mathbb{E}\left[X_{1}^{\theta}\right]=a$ and $\mathbb{E}\left[\left(X_{1}^{\theta}\right)^{2}\right]<\infty$, so $\mathbb{B}\left(a n<S_{n}^{\theta}<a n+\sqrt{n}\right)$ converges to a >0 number as $n \rightarrow \infty$.
Thus $M(\theta)^{n} e^{-\lambda a n-\theta \sqrt{n}} B\left(a n<S_{n}^{\theta}<a n+\sqrt{n}\right)=e^{-n I(a)+o(n)}$.

Examples: When $X_{1} \sim N(0, c), I(a)=\frac{a^{2}}{2}$ for $a \geqslant 0$

- When $\mathbb{P}\left(X_{1}=1\right)=\mathbb{P}\left(X_{1}=-1\right)=\frac{1}{2}, \quad I(a)=\frac{1+a}{2} \ln (1+a)+\frac{1-a}{2} \ln (1-a)$ for $0<a<1$.

Remarks: - More generally, the study of $\mathbb{B}\left(S_{n}>x_{n}\right)$ hes attracted a lot of interest.

- More generally, a family $\left(\mu_{\varepsilon}\right)_{\text {vo }}$ of probability measures on a metric spae E is said to satisfy a large deviation principle with rate function I if for every Bore set A,

$$
-\inf _{x \in \AA} I(x) \leqslant \liminf _{\varepsilon \rightarrow 0} \varepsilon \mu_{\varepsilon}(A) \leqslant \operatorname{limunp}_{\varepsilon \rightarrow 0} \varepsilon \mu_{\varepsilon}(A) \leqslant \inf _{x \in \bar{A}} I(x)
$$

(See the book of Dembo \&e Zuitouni or of Klembe, chapter 23)
3) Behavior under the conditional law
(also called "Gibbs conditioning principle" in physics)
We beep the assumptions X_{1} not constant, $\forall t \in \mathbb{R} \mathbb{E}\left[e^{t x}\right]<\infty$ and tale区 $\left[X_{1}\right]<a<\sup$ Support X_{1}.

What is the "typical" behavior of $\left(S_{1}, \ldots, S_{n}\right)$ given $\mathbb{B}\left(\cdot \mid S_{n}>n a\right)$?

Roughly speaking, we shall see Heat under $\mathbb{B}\left(\cdot \mid S_{n}>a n\right)$ the typical pictrue is:

in red: $\left(\frac{S_{k}}{n}: 0 \leq k \leq n\right)$
Theorem (Folklore) Under the sauce assumptions as Crooner's theorem, for every $\varepsilon>0, \mathbb{P}\left(\left.\max _{0 \leq k \leq n}\left|\frac{S_{R-a k}}{n}\right|>\varepsilon \right\rvert\, S_{n}>a n\right) \xrightarrow[n \rightarrow \infty]{\rightarrow} 0$.

Norm up: let us show that $\mathbb{P}\left(\left.\frac{S_{n}}{n}>a+\varepsilon \right\rvert\, S_{n}>a n\right) \underset{n \rightarrow \infty}{\longrightarrow} 0$. Ne may assume that $a+\varepsilon<\sup S_{p p r i t}$, This probability is $\frac{B\left(S_{n}>(a+\varepsilon) n\right)}{P\left(S_{n}>a n\right)}=\exp (-(I(a+\varepsilon)-I(a)) n+o(n))$
But I is increasing, so $I(a+\varepsilon)-I(a)>0$ and we get the result.
Seance Let (y_{i}) $i_{1,1}$ be cid R-valued rev. satisfying cranmer's condition. Sot $w_{0}=0, w_{n}=y_{1}+\cdots+y_{n}$ $F_{i x} \varepsilon>0$. There exists $c>0$ such that $\mathbb{B}\left(\operatorname{more}_{0 \leq k \leq n} \frac{\left|W_{k}-\Phi\left[y_{i}\right] k\right|}{n} \geqslant \varepsilon\right) \leqslant e^{-c n}$

Proof Without los of generality we may arseuve that $\mathbb{E}\left[Y_{1}\right]=0$. Take $\lambda>0$
$\left(W_{R}\right)_{R \geqslant 0}$ is a matingobe and $e^{x x}$ is convex. thess $\left(e^{\lambda W_{R}}\right)_{R \geqslant 1}$ sa submatingale, and Dob's maximal inequality gives for every $\lambda>0$:

Sine $\frac{\left.\ln \mathbb{F} t e^{\lambda W_{1}}\right]}{\lambda} \rightarrow \frac{d}{M} \ln \mathbb{E}\left[e^{\lambda W_{1}}\right]_{\lambda_{\lambda=0}}=\mathbb{E}[W]=0$, we can choose $\lambda>0$ such that $\varepsilon-\frac{\ln \mathbb{E}\left[e^{\lambda W_{1}}\right]}{\lambda}>0$.
One similauly gets the result for $\mathbb{B}\left(\operatorname{man}_{0 \leq B E n} W_{k} \leq-\varepsilon n\right)$ by coundering $-w_{n}$.
Proof of the theorem Set $\theta=8(e)$

$$
\leqslant e^{-n I(e)} \mathbb{P}\left(\operatorname{mex}_{0 \leqslant k \leqslant n}\left|\frac{S_{R}^{0}-a k}{n}\right|>\varepsilon\right)
$$

Thus by Crammer's theorem $\mathbb{P}\left(\left.\underset{0 \leq k \leq n}{\max }\left|\frac{S_{k}-a k}{n}\right|>\varepsilon \right\rvert\, S_{n}>a_{n}\right)^{n}=\mathbb{B}\left(\max _{0 \leq k \leq n}\left|\frac{S_{k}^{\theta}-a k}{n}\right|>\varepsilon\right) e^{o(n)}$
and the result follows from the hume (applied with $Y_{1}=x_{1}^{\theta}$).
End of lectrere $2 \sim$
4) Local estimates and the local central limit theorem

Our goal is now to studly enalogors questions when " $S_{n} s_{\text {sen }}$ " is replaced with " $S_{n}=e_{n}$ " Since this event can be empty, we need some additional assumptions.

Definition A real valued randan variable X is called lattice if there exist $b \in \mathbb{R}$ and $h>0$ with $\mathbb{P}(x \in b+h z)=1$ The largest such h is called the span of X (we will se below that it is well defined)
If the span is 1 then X is culled aperiodic
Example If $P(x=1)=P(x=-1)=\frac{1}{2}$, then x has span 2
Lemma let x be a \mathbb{R}-valued r.v. Set $\phi(t)=\mathbb{E}\left[e^{i x t}\right]$ for $t \in \mathbb{R}$.
(1) X is lattice if $\exists t \neq 0$ with $|\phi(t)|=1$
(2) x has span $h>0$ if $\left|\Phi\left(\frac{2 \pi}{h}\right)\right|=1$ and $|\phi(t)|<1$ for $t \in\left(0, \frac{2 \pi}{h}\right)$.

Proof: (1) If $\mathbb{B}(x \in b+h \mathbb{Z})=2$, then $\mathbb{B}\left(\frac{x-b}{h} \in \mathbb{Z}\right)$, so $\mathbb{E}\left[e^{2 \pi \frac{x-b}{h}}\right]=1$ and $\left.\left|\mathbb{E}\left[e^{\frac{2 \pi x}{n}}\right]\right|=e^{2 \pi h b} \right\rvert\,=1$ Conversely, if $\left|\phi\left(t_{0}\right)\right|=1$ for $t_{0} \neq 0$, there is $a \in \mathbb{R}$ such that $\phi\left(t_{0}\right)=e^{i a}$. Then $\mathbb{E}\left[e^{i\left(t_{0} x-a\right)}\right]=1$
The $\mathbb{E}\left[\cos \left(t_{0} x-a\right)\right]=1$. Sine $\cos \leq 1$, this implies os $\cos \left(t_{0} x-a\right)=1$.
Thee ass. to $x-a \in 2 \pi \mathbb{Z}$, so $\mathbb{P}\left(x \in \frac{a}{t_{0}}+\frac{2 \pi}{t_{0}} z\right)=1$
(2) The proof of (1) shows that $f b \in \mathbb{B}$ and $h>0$ sit $P(x \in b+h \geq)=1$ is f $\left|\phi\left(\frac{2 \pi}{h}\right)\right|=1$, which entrails the result.
∞

Examples. If $B(X= \pm 1)=\frac{1}{2}, \phi(t)=\cos t$ and $\mid \phi(t)=1$ for $t \in \pi 27$

- If $x \sim N\left(0,| |, \phi(t)=e^{-t^{2} / 2}\right.$ and $|\phi(t)|<\mid$ for $t \neq 0$.

Theorem (local central limit theorem) Let $\left(X_{1}\right)_{i>1}$, x ii aperiodic random variables with values in \mathbb{Z}. Assume that $\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Set $m=\mathbb{E}\left[x_{1}\right]$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]-\mathbb{E}\left[x_{1}\right]^{2}$. Assure $\sigma^{2}>0$. Set $S_{n}=x_{1}+\cdots x_{k}$ Then $\sup _{k \in \mathbb{Z}}\left|\sqrt{n} \mathbb{P}\left(S_{n}=k\right)-\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2}\left(\frac{k-m n}{\sigma \sqrt{n}}\right)^{2}\right)\right| \underset{n \rightarrow 0}{\longrightarrow 0}$

Ne will first explore some consequences and prove this later.
In practice, we often write $\mathbb{B}\left(S_{n}=k\right)=\frac{1}{\sqrt{2 \pi \sigma^{2} n}} e^{-\frac{1}{2}\left(\frac{k-m n}{\sigma \sqrt{n}}\right)^{2}}+\frac{\varepsilon(k, n)}{\sqrt{n}}$ with $\sup _{k \in 2}|\varepsilon(k, n)| \underset{n \rightarrow \infty}{\longrightarrow} 0$

As a consequence:
Corollary Under the same assumptions, when $\mathbb{E}\left[X_{1}\right]=0$:
(1) $\mathbb{B}\left(S_{n}=0\right) \sim \frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot \frac{1}{\sqrt{n}}$
(2) $\exists\left(>0, \quad \forall n \geqslant 1, \quad \forall k \geqslant 1, \quad P\left(S_{n}=k\right) \leqslant \frac{c}{\sqrt{n}}\right.$
(3) If $\left(x_{n}\right)$ is a sequence of integaes with $\frac{x_{n}}{\sigma \sqrt{n}} \xrightarrow[n \rightarrow \infty]{ } x$, then $\sqrt{\sigma_{n}^{2}} \mathbb{S}\left(S_{n}=x_{n}\right) \longrightarrow \frac{1}{n \rightarrow \infty} \sqrt{\sqrt{i \pi}} e^{-\frac{x^{2}}{2}}$.

Remark The local central limit theorem (LCLT) implies the central limit theorem C(LT): to

$$
\begin{align*}
\text { Simplify assume } \mathbb{E}\left[x_{1}\right]=0 \text {. Then } \\
\qquad \begin{aligned}
B\left(a<\frac{S_{n}}{\sigma \sqrt{n}}<b\right)=\sum_{a \sigma \sqrt{n}<b<b \sigma \sqrt{n}}^{b-\sqrt{n}} \mathbb{C}\left(S_{n}=k\right) & =\int_{a \sigma \sqrt{n}}^{b} \mathbb{C}\left(S_{n}=L u J\right) d u+o(1) \quad(!) \\
& =\int_{a}^{b} \frac{\sigma-\sqrt{n} B\left(S_{n}=L u \sigma \sqrt{n}\right)}{S_{n}(u)} d u+o(1)
\end{aligned} \tag{!}
\end{align*}
$$

$\operatorname{But}\left\{\operatorname{Sn}_{n}(u) \longrightarrow \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2}\right.$ for $u \in[a, b]$ fixed. (corollary (31))

$$
\left\{\sup _{u \in[a, h]}\left|8_{n}(u)\right| \leqslant C \quad \text { (Corollary }(z)\right)
$$

We conclude that $B\left(a<\frac{S_{n}}{\sigma \sqrt{n}}<b\right) \underset{n \rightarrow \infty}{\longrightarrow} \int_{a}^{b} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} \mid t} d x$ by dominated convergence

Here we rested the very useful trick of writing a sam as an integod: $\sum_{k=0}^{\infty} d_{k}=\int_{0}^{\infty} a_{L x S} d x$. Let us now tun to the study of large de vichrius in a local setting.

Theorem Assume that X_{1} satisfies Creamer's condition, and is Z-valued aperiodic. Fix at $\left(\mathbb{E}\left[x_{1}\right]\right.$, sup $\left.S_{\text {sport }}\right)$. Let $\left(x_{n}\right)$ he a sequence of integers sit $x_{n}=$ an $+0(\sqrt{n})$ (for example $x_{n}=$ Lan).
Recall that $\theta(a)$ rschosen such that $L^{\prime}(\theta(e))=a$ with $L(t)=\ln \notin\left[e^{t x_{1}}\right]$. I During te lecture this theorem was Then $P\left(S_{n}=x_{n}\right) \underset{n \rightarrow \infty}{\sim} M(\theta(\theta))^{n} e^{-\theta(a) x_{n}} \frac{1}{\left.\sqrt{2 \pi V_{a}\left(X_{1}^{(2 a 0}\right)}\right)^{n}} \quad$ incorrectly stated with x_{n} st $\frac{x_{n} \rightarrow a}{}$ (we aduely wed $x_{n}=a n+o\left(r_{n}\right)$
Remarle that here we have en asymptotic equivalent (and that $M\left(\operatorname{coc}()^{n} e^{-\theta(a) e n}=e^{-I(a) n}\right.$, but $e^{-\theta(a) a n} \underset{n \rightarrow \infty}{\psi} e^{-\theta(a) x_{n}}$ in general)

Proof As before, set $g=\theta(e)$ and withe

$$
\mathbb{B}\left(S_{n}=x_{n}\right)=M(\theta)^{n} \boxminus\left[\mathbb{1}_{S_{n}^{\theta}=x_{n}} e^{-\theta S_{n}^{\theta}}\right]=M(\theta)^{n} e^{-\theta x_{n}} \mathbb{B}\left(S_{n}^{\theta}=x_{n}\right)
$$

So the LCLT $\mathbb{B}\left(S_{n}^{\theta}=x_{n}\right) \sim \frac{1}{\sim}$
End of lecture 3
We now study the behariser under the conditional probability
Theorem under the same assumptions and votalion as the previous theorem,

The proof is essentially the same as in the "S nan" care:
Proof Sat $\theta=8(c)$

Thus $\mathbb{P}\left(\left.\operatorname{mox}_{0 \leq S S_{n}}^{0 \leq k n}\left|\frac{s_{n}-a k}{n}\right|>\varepsilon \right\rvert\, S_{n}=x_{n}\right) \leqslant C \sqrt{n} e^{-c n}$ for certain constants $s, c>0$.

Theorem Under the same assumptions and notation as the previous theorem, for every $k \geqslant 0$ and $i_{1, \ldots,} i_{k} \in \mathbb{Z}, \mathbb{B}\left(X_{1}=i_{1}, \ldots, x_{k}=i_{k} \mid S_{n}=x_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{P}\left(x_{1}=i_{1}\right) \frac{e^{\theta\left(i_{1}\right.}}{\mu(\theta)} \ldots \mathbb{B}\left(x_{k}=i_{k}\right) \frac{e^{\text {ink }}}{\mu(\theta)}$

This means that under $\mathbb{H}\left(\cdot\left(S_{n}=x_{n}\right), X_{1, \ldots,} X_{r e}\right.$ are asymptotically is with law giving probability $\mathbb{B}\left(x_{1}=i\right) \frac{e^{8 i}}{M(\theta)}$ to i.

Proof $W_{\text {site }} B\left(X_{1}=i_{1}, \ldots, X_{R}=i_{k} \mid S_{n}=x_{n}\right)$

$$
=\mathbb{B}\left(X_{1}=i_{1}\right) \cdots \mathbb{B}\left(x_{p}=i_{k}\right) \mathbb{B}\left(S_{n-k}=x_{n}-i_{1}-\cdots-i_{k}\right) / \mathbb{B}\left(S_{n}=x_{n}\right)
$$

$$
\mathbb{B}\left(S_{n-k}=x_{n}-i_{1}-\cdots-i_{(e)} \sim M(0) e^{-r(a)\left(x_{n}-i_{1}-\cdots-i k\right)} \times \frac{1}{\left.\sqrt{2 \pi \sqrt[V a l]{ }\left(x_{1}\right)}\right) n}\right.
$$

Thus $B\left(X_{1}=i_{1} \ldots, x_{k}=i_{k} \mid S_{n}=x_{n}\right) \underset{n \rightarrow \infty}{ } B\left(x_{1}=i_{1}\right) \ldots B\left(x_{R}=i_{k}\right) \frac{e^{\theta(a)\left(i_{1}+\cdots+i_{k} \mid\right.}}{\Gamma(\theta))^{e}}$
And the result follows

We finally tum to the proof of the LCLT. Recall the statement:
Theorem (local central limit theorem) Let $\left(X_{1}\right)_{i \geqslant 1}$ be cid aperiodic random variables with values in \mathbb{Z}. Assume that $\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Set $m=\mathbb{E}\left[X_{1}\right]$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right]-\mathbb{E}\left[X_{1}\right]^{2}$. A sure $\sigma^{2}>0$. Set $S_{n}=X_{1}+\cdots+X_{k}$ Then $\sup _{k \in \mathbb{Z}}\left|\sqrt{n} \mathbb{P}\left(S_{n}=k\right)-\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2}\left(\frac{k-m n}{\sigma \sqrt{n}}\right)^{2}\right)\right| \underset{n \rightarrow 0}{\longrightarrow 0}$

Proof: Set $X_{i}^{\prime}=x_{i}-m, S_{n}^{\prime}=S_{n}-m n$ and $\phi(t)=E\left[e^{i t x_{2}^{\prime}}\right]$. Since X_{1} is \mathbb{Z}-valued, observe that $|\phi(t)|$ is 2π periodic. The idea is to use "discrete fourier inversion":
since $\mathbb{E}\left[e^{i t S_{n}^{\prime}}\right]=\sum_{j \in \mathbb{Z}-m n} e^{i t j} \mathbb{P}\left(S_{n}^{\prime}=j\right)$, we have $\mathbb{P}\left(S_{n}^{\prime}=k\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i t k} \mathbb{E}\left[e^{i t S_{n}}\right]$ et $=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i t k} \phi(t)^{k} d t \quad$ for $k \in \mathbb{Z}-m n$

Thus, for $u \in \mathbb{R}$ with $\mu \sigma \sqrt{n}+m n \in \mathbb{Z}: \sigma \sqrt{n} \mathbb{P}\left(S_{n}^{\prime}=\mu \sigma \sqrt{n}\right)=\frac{1}{2 \pi} \int_{-\pi \sigma \sqrt{n}}^{\pi \sigma \sqrt{n}} e^{-i t u} \phi\left(\frac{t}{\sigma \sqrt{n}}\right)^{n} d t$
But $\forall_{u} \in \mathbb{R}, \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \mu^{2}}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t u-t^{2 / 2}} d t$
Thus, for fixed $A>0,,^{2 \pi} 0<\varepsilon \leq 1$, for n sufficiently large:

$$
\begin{aligned}
& \left|\sigma \sqrt{n} \mathbb{B}\left(S_{n}^{1}=\mu \sigma \sqrt{n}\right)-\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \mu^{2}}\right| \leq \frac{1}{2 \pi}\left(\left|I_{1}^{i}(\mu, A)\right|+F_{2}^{n}(\mu, A, \varepsilon)\left|+\left|I_{3}^{n}(\mu, \varepsilon)\right|+F_{4}^{n}(\mu, A)\right|\right. \text { with: } \\
& I_{1}^{n}(\mu, A)=\int_{-A}^{A} e^{-i t \mu}\left(\varphi\left(\frac{t}{\sigma \sqrt{\pi}}\right)^{n}-e^{-t^{2} / 2}\right) d t, I_{2}^{n}(\mu, A, \varepsilon)=\int_{A<1 \in<\varepsilon \sigma \sqrt{\pi}}^{-i t \mu} \varphi\left(\frac{t}{\sigma n}\right)^{n} d t, I_{3}^{n}(\mu, \varepsilon)=\int_{\varepsilon \sigma \sqrt{a}<1(1<\pi \sigma a} e^{-i t \mu} \varphi\left(\frac{t}{\sigma \pi}\right)^{n} d t
\end{aligned}
$$

and $I_{y}(\mu, A)=\int_{\text {cet>A }} e^{-i t u-t^{2} / 2} d t$. We shall just write $I_{1}, I_{2}, I_{3}, I_{y}$ to simplify notation.
We show that $\forall \varepsilon^{\prime}>0$ fired, we can find $A>0$ and $\varepsilon \in(0,1)$ such that for n large enough, forever $u \in \mathbb{R}$ with mos $+m n \in \mathbb{Z}$ we have $\left|I_{i}\right| \leqslant \varepsilon^{\prime}$ for $i=1,2,3,4$

First write $\varphi(t)=1-\frac{t^{2}}{2} \sigma^{2}+t^{2} \eta\left(t^{2}\right)$ with $\eta: \mathbb{R} \rightarrow \mathbb{C}$ continuous with $\eta(0)=0$.
To see this, one can use the inequality $\left|e^{i x}-\sum_{k=0}^{n} \frac{(i x)^{k}}{R!}\right| \leq \min \left(\frac{(x)^{n+1}}{(n+1)!}, 2 \frac{\left(\left.x\right|^{n}\right.}{n!}\right)$ (of Lemme 3.3.19 in Durrett's Probability theory and examples $5^{\text {th }}(E \alpha)$, which entails

$$
\left|\varphi(t)-1-t^{2} \sigma^{2} / 2\right| \leq t^{2} \underset{\operatorname{man}(|t|)\left(x_{1}^{\prime}, 2\left(x_{1}^{\prime}\right)^{2}\right)}{ }
$$

$\xrightarrow[G \rightarrow 0]{\longrightarrow}$ by dominated comeregonce
First choose $A>0$ such that $2 \int_{A}^{\infty} e^{-t^{2} / 4}$ at $\left\langle\varepsilon^{\prime}\right.$. (y*) The choice of ε will be explained later.
For $I_{4}\left|I_{y}\right| \leq 2 \int_{A}^{\infty} e^{-t^{2} / 2} d t<\varepsilon^{\prime}$ by $(\psi \psi)$.
For I_{1} we have $\left|I_{1}\right| \leqslant S_{-A}^{A} \delta_{n}(t)$ at with $f_{n}(t)=\left|\varphi\left(\frac{t}{\sigma \sqrt{n}}\right)^{n}-e^{-t^{2} / 2}\right|$
We have $\left|8_{n}(t)\right| \leq 1+e^{-t^{2} / 2}$ and $f_{n}(t) \xrightarrow[n \rightarrow \infty]{\longrightarrow 0}$ by $(*)$
Thus $\left|I_{1}\right| \leq \varepsilon^{\prime}$ for n sufficiently la ge and all by dominated convergence.
For I_{2} We first check that $\exists \varepsilon>0$ s.t $|\phi(t)| \leqslant \exp \left(-\frac{t^{2} \sigma^{2}}{4}\right)$ for $|t| \leqslant \varepsilon$.

$$
\text { By } \begin{aligned}
\text { By }(t),|\phi(t)|^{2}=\phi(t) \overline{\phi(t)} & =\left(1-\frac{t^{2} \sigma^{2}}{2}+t^{2} \gamma(t)\right)\left(1-\frac{t^{2} \sigma^{2}}{2}+t^{2} \frac{1}{\left.1 t^{2}\right)}\right) \\
& =1-\sigma^{2} t^{2}+o\left(t^{2}\right)
\end{aligned}
$$

The $|\phi(t)|=1-\frac{\sigma^{2}}{2} t^{2}+o(t 2)$
Since $\exp \left(-\frac{t^{2} \sigma^{2}}{4}\right)=1-\frac{\sigma^{2} t^{2}}{4}+o(t)$ me get $(\forall \notin \phi)$
Then, for $|t| \leq \varepsilon:\left|I_{2}\right| \leq 2 \int_{A}^{4} \int_{A}^{\varepsilon \sigma \sqrt{n}}\left(e^{-\left(\frac{t}{\sigma \sigma_{A}}\right)^{2} \frac{\sigma^{2}}{4}}\right) d t \leq 2 \int_{A}^{\infty} e^{-t^{2} / 4} d t \leq \varepsilon^{\prime}$
For I_{3} By a periodicity, $\mid \varphi(t)<1$ for $t \in(0,2 \pi)$. This $\exists c>0$ st $\left|\phi\left(\frac{t}{\sigma r}\right)\right| \leqslant e^{-c}$ for $\varepsilon \sigma \sqrt{n}<|t|<\pi \sigma \sqrt{n}$, so that:

$$
\left|I_{3}\right| \leq 2 \int_{\varepsilon \sigma \sqrt{n}}^{\pi \pi \sqrt{x}} e^{-c n} d t \leq 2 \pi r \sqrt{n} e^{-c n} \leq \varepsilon^{\prime} \text { for } n \text { soffivieatly large }
$$

∞
Remarles. If x_{1}, has span h with $\mathbb{P}\left(x_{1}=b+h 27\right)=1$, ore gets an analog of the LCLT by considering $\frac{X_{i}-b}{h}$

- If is possible to show that

$$
\begin{aligned}
& \text { - If is possible to show that } \\
& \left.\sup _{k \in \mathbb{Z}} \max \left(1,\left(\frac{k-m n}{\sqrt{n}}\right)^{2}\right) \operatorname{lov} \mathbb{N}\left(S_{n}=k\right)-\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{k-m n}{\sigma \sqrt{n}}\right)^{2}} \right\rvert\, \underset{n \rightarrow \infty}{\longrightarrow 0}
\end{aligned}
$$

which gives a better ensor bound for $\left|k-m_{n}\right| \gg \sqrt{n}$.
(see Principles of Random Walk, Spitzur, Chap II, Sec 7, P10)
End of Bectroe 4

