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In probability theory, many theorems concern "typical events"
,
which have probability 1 or tending to on

Large deviations concern "etypical events" whose probability tends to 0
. Typical question them are :

· How fast is the
convergence (vate of decay) ?

· Given this atypical event
,

what are typical events of the system under the conditional low ?

For
exemple, if you

release at ETH a capybera who wonders at randon
, if it

goes
to Paris and then back to ETH

,
what will be it's

typical path ?

Her we focus on the case of random walks .

Let (Xnns ,

be ind R-valued mir
.

With EX? < B.

Set Sn = X
,
+... + Xn .

We know that In EIX and SEXi Nos et
n-0

mes "Typically the deviations of Sumound NIEIX1] are of order in"

But for fixed ac R
,
what can we

say
about $(Su)an)

,
<P(Sn = en) ?
local Probability

What can me say
about (S..., Sn) conditionaly given 45n>an3 or {Sn= ani ?

Cwhen these events have <0 probability).

1) First observations

We first focus on 1) Sn > an). Clearly ,
be the central limit theorem

, writing $(Sn)an) = BIX1]McCa-Ex
we have B(Su > en) -> 1 if a < #[X1]

->

E if a = EtX1] .

①
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Now essume that as EX 1 S

· Assem that X
, is NCO

, 1). Then SnNcon) and for a) o :

B) Sa na)
= Se

en

de ~ te
- na/

, so B(Sn > ma) = e-htocul
A similar computation shows that Kaso

,
B(SnECan

, enth)) iso P/Sn) anl,

which shows that for B) . (Su > an)
,

Si
is of order an

· If B(X , a) E (0
, 1)

,

then $)Sn > an) > $(X , > a
..., Xn > a) = $(X , > a) ",

so P(Sn>an) cannot decay fester then exponentially.
· Assume that - X, X

,
that X ,

has a density and P(X
,
> ), for for some <30

.
Then

P) Sn > ank
,

P(Xn > en) B(Sn
.,

>0)
,
acenit. E

This B) Sn) an) does not decay exponentially fast.
If B(X

, > ~exp)- ) the same holds (and X
,
has finite moments of all orders

Colusion :
it is not always tre that P(Sn)on) decays exponentially fort

2) Gamer's theorem

Assumptions X2 is not constant and KTE
,
MIt) = #Cet * ) < x. (*) I Gama conditions

We shall see that $(Sn > an) decays exponentially fast for #[X1 < a < supSupport Xi (Support X
, is the smallest closed st FC such

thatP(X
,
EF) =1

,
in particular A/Sn) an) = 0 for as sup Support X1) .

The main idealtool is "exponential tilting" : by (4) for every
&ER we can comide a r X with law given

by #[8(X: 13 = [8(X ,)04] for 8410 measmalee

Observe that for all 020
,

Xi satisfies Camer's condition

Let (Xi) is,
be ind and not S . = X

,
+.. + Xn

. By definition one has :

Proposition For 140 measurable,

#[8(X;
..., Xi)=

20Sn] and #[8(X ,..., x) = M(a)
*

# [f(x ,

%

.. X28) - OSn

⑳



In particular, IP(Sn > an) = M10)"E 1
son

S.

Theorem (Camez) Fixs ac (E[X1]
, sup Support (X1)) .

- I(an +Och)There exists oce) o such thatIX,J = a
,

and B(Sn)en) = with I(a) = 0(a)a -In Mlosal)

Intuition : the optimal strategy to achieve Sucen is that "each Xi contributes a little bit" and "tilts itself a little bit" in order to

favor taking langer values . represents in some sense the "cost" of this tilt for every ;, so eflal is the total cost

Nefirstchecktheristenofosa.For teketLenMIt=Ent
Se

End of Lecture I

Lama L is convex

(A the log of a convex function is not always convex , for exemple

D

Loof take titzti end pe [0
, 13 . Ting Hölden inequality :

L(pt , + + p)tz) = en [Ce
**, (5 (Ex)"] < In #Te

**
J%.

** y = pt(t) + (1- p)((t)

e

Proof of existence ofp(a) : Consider 8(0) = ad-L(0)
.

Ne have f(0) =0
, 8 is continuous and timingo

Indeed
,

take a < b > sup Support X 1 .

Then

M10) >, #le
**

1x
,
b] <, e

*

B/X, >
, b) 50 ( (0) >, &b + In (10)

,
b)

To
This

80) 0/aesrugiciently large
Thus

,
sincef is conceve

, letting pas be the point where I reaches it supremen ,
we get s (a)) = 0,

which gives L'(0(a)) = a
.

->

Remack The previous proof shows that I(a) = 810(a)) = Sup (48-((0)) ,
which in partimum

implies that I is increasing .

8, 0
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Endof the proof of the theorem

⑭bound : Just write B(Sn > an) = 1)
Messa

,Masary peser Moca
h (Plasa-InMLbl e

↳bound : Using the proposition ,
write (with 8 = 0(a) to simplify notation

④ (Sn > an) = M10)" Issen 2 Su
-esMos" Rencontre

Mogh-den-own BlanScent)e

But ETX: 3 = a and #EXi)'] < 0
,

20 Blanc Sp< ent in) converges
to a 30 mumber as

n -> 0.

The M10)"-
dan - onn

Plan 2 Sn
&

< an + ) =
Ilal

tocal

-

Examples : · When X I
UNCO

, 1
,

I(a)= for asso

· When $(X ,
= 1) = A(X,

= -1) = G
,

I(a) = lulite)t hulte) for ocal .

Remaks : · More generally, the study of B(Sn2(n) has attracted a
lot of interest.

· More generally ,
a family (M2) <so of probability measures on a metric

spoe
E is

said to satisfy a large deviation principle with mate function I if for every Bord set A,

-- inf [(0) < Liment 5 MeCA) < himmy <MsCA) if -inf
le et

de

SSee the book of Dembo a Zeitorni or of Klebe , chapter 23)

Behaviorunder the conditional law
I also called "Gibbs conditioning principle" in physics

We keep the assumption X ,
not constant

,
VER #Le *

3 < 0 and take

EIX, < 0 < sup Support X
,.

What is the "typical" behavior of (S ..... Sn) given B)
. (Su > na) ?

O



Roughly speaking,
we shall see that under BI . (Sn > on) the typical picture is :

a
ce

- -

~sitiI
n

I <

in red: (S : ocken

Theorem (Folklore) Under the same arrumptions as Gaver' theorem
, for every 30

,
4)man/S-ab) > 3/Sa > an)2 r

Non up : let us show that $) > a +/Sean) -> 0. We
may assume that a +3 < supSupport,

n -

0

This probability is

Satan) = exp) - (f(a+2) -I(a) (n Holle

But I is increasing ,
so I(e+3) - I(a) 0 and we get the result.

Lemmer let (Yilis
,

be ind R-valued r .v . satisfying Crama's condition. Set Noto
,

Wh = Y,
+ +Y

-
CR

Fix a so . There exists (so such that B)more [Yk1x , e e

Proof Without loss of generality me

may annue that[Y1J0
.

Take to

Xx

(Wa)
Rx

is a martingale and e is convex
. The (pWP) es is a submartingale,

and Doob's maximal inequality gives for every
to:

X
Wa15 )mar WR s

- En) = (P(maseNREtnyx - EtEt ) =

-In(e inset

Since AetWg -> CETetN'S
I=

= ETW]I0
,

we can choose the such that 5 etho

One similarly gets the result for /maWM1 -En) by comidering en

-

Proof of the theorem Sit 0 = Pa

Write Plmore / SaRKE ,
Sn) an) = M10)"EtRmare/SakK5, Se en

Enle
& -Nice) (3)maren ars et

Thus by Gamen's theorem P)More/*RKE/Sn) an) = B)ma ISakKE
et

and the result follows from the luma supplied with Y ,
= X, ) .

End of Lecture2
-æ
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4) Local estimates and the local central limit theorem

Our goal is now to studyanalogous question when "Sudan" is replaced with "Su = an"

Since this event can be empty ,
we need some additional assumptions.

Definition A real-valued random variable X is called lattice if there exist be R and <o with (P(XEbth)=

The largest such h is called the
spen of X (we will see below that it is well defined

If the span is 1 then X is called aperiodic

Example If¢(X = 1) = (P(X = -1) =1 ,
then X has spend

Lemma let X be a IR-valued r . v
.
Set Q(H =[ci*+

] for te.
(1) X is lattice iff 5tt0 with 1 P (t)) =1

(2) X has
spen

(co i8s ((E) = 1 and 1 d1H/ < 1 for te 10, I) .

Prof : (1) If 1(X - b+h2 ) = 1
,
then B) # 2)

,
so *** = 2 and /Il**3) = l

**

/2

Conversely , if IPH0)1 = 1 for to 0
,

there is a ER such that P(td) = e. Then #Ici lox-a) J = 1

Thes #[10S(tox-a)] = 1. Since cos11
,
this implies as cos(to x -a) = 1.

Thes as
. tox-et2π

,
so P(XE +#2

(2) The proof of (1) shows that FbER and hL0 st 15 (X +bth27)=

ils 1 P /* )1 = 1
,
which entails the result.

&

Examples · 18 P(X =# 11 = =/ PH) = cost and (PIt = 1 for teπ27
-

t2/2
· If XVN10, 11

, DH = e and IPHK / for +70 .

⑥



Theorem (local central limit theorem) het (Xil is be ind aperiodic random variables with values in 2. Assume
that E[XYJ < 8.

.

Set m = E[X] and o = [Xi] - #EX , ]" . Assure o 0
.

Set Su = X
,
+ Xn

Then sup Im((Sn= R)
- exp)-5 (M)")I

REZ

We will first explore same consequences and prove
this later.

In proctie, we often write I(Sn = K)= ene
with eup 15(k , /l ->0

n ->

REZ

As a consequence
:

Clary Under the same essumptions , when EIXI =0 :

(1) B (Sn = 0) ~att

R(2)Eco,Fn, !KRx(S=K)EtWith c
,
then Vo /Sace

neo
viteI.

Remark The local central limit theorem() implies the central limit theorem (CLT) : to

simplify assume EIX1] = 0. Then burn

B(ac b)= P(Su = R) = S P(Sn = Lm)) d +o le
errckbore

= Son B(Sn =Leon)) de tol
--

Suces

But In(e)itteie
e

for ec[a
, b] fixed. (Corollag (3)

E tup (8n() < C (Corollay 121).
ut[a

, h]

We conclude that B/o >Sab) Stickdes by dominated convergerle

⑰



Here we resed the
very useful trick of writing a sun as an integral:d = Sans .

Let us now tran to the study of large de victions in a local setting.

Theorem Assume that X
, satisfies Cama's condition

,
and is -valued aperiodic. Fix a t (E[X1)

, sup SupportX1)

Let (n) be a sequence of integers sit Un = antolr) (for example < = Lans).

Recall that oca) ischosen such that L'Iocall = a With L(t = In #Ce*
3. A During the lecture this theorem was

n
-

0(a) n I
Then P(Sn= P(n) ~ Mocall e -

- incorrectly stated with anst + a (we actually need sin-antolv
n +> 0 Viva(4

,/U

-Pla)en-[(a)nRemark that here we have on asymptotic equivalent (end that MIocall"e =
,
but

-ocasoni ell
en e

in general)e

Prof As before ,
set 8 = 0(a) and write

I ⑲(Sn = 0(n) = M(0) " Igo=
-o
7 = M(ajk

- Oxn

15(S =xn)e e

by the LCLT P(Si = xn) ~ 1
-

V2πVa(Xi) n

&

End of lecture &

We
now study the behavior under the conditional probability

Theorem Under the same arrumptions and rotation as the previous
theorem,

for every 320
,
4)Mac /S-ab) > </Sa = 7o .

n-> 0

The proof is essentially the same as in the "Sudan" case :

Prof Set 0 = P(a)

I Write P(more / SaRKE ,
Sn = (n) = M10)"EtRmar/SaRKs,

SO OPCn] MIDen (mon Sase et
Thes B)mon I aRKE(Su= (n)

-

>C me" for certain constants , C.

a

O8



Torem Under the same arrumptions and rotation as the previous
theorem

, for every >, 0 and
OIR

id
, -iREE, BLX1 4

,
--

. XK= R/Sm = 0(n) -> Pilot ....
D(XRFe

n+ Mos

This means that under BC . /Sn = <(n)
,
X1 1.., Xb one asymptotically ind with

law giving probability B(X ,
= i)de toi

Prof Write (Xi, --

. XR= ir / Sn = x(n)
= P(X ,

=1) ... D(XK = IR) PCSn-R =Cn -i -... - in)/P(Sn= (n)

But an-i -
...

- im = a(n-b) + 0(V) so by the theoren settingo = 0(e) as usual,
-o(a) (Dn-i - ...

- ik)

B(Sn-R = xn - i
,

- ... - in) ~ M(0) e rax
,es n

This B(X
, = =

. .., XR = in /Sn= Xn) (X , ) ... B(XB = 2)
da) List -- + irlI

And the result follows

i
e

M(0)
R

-

-

We finally turn to the proof of the LCLT.

Recall the statement :

Theorem (local central limit theorem) het (Xil is be ind aperiodic random variables with values in 2. Assume
that E[XYJ < 8.

.

Set m = E[X] and o = [Xi] - #EX , ]" . Assure o 0
.

Set Su = X
,
+ Xn

Then sup Im((Sn= R)
- exp)-5 (M)")I

REZ

D
1 Set xi = Xi-m ,

Si=Sn-mn and PHH=[citX2]. Since X
, is 2-valued

,

observe that IP11 is 24roof-i

periodic. The idea is to sere "discrete Focries inversion" :

since Eteitsi)
=[

exti (Sh=j)
,

we have M(S'n= R)= fith Eteits'te

=4 St Title P(
*

At for REZ-me

⑨



The
, for me with MonthnEz : 0 (s'mar) = # tarniturPI at
t -Tr

- -ite-E2/2
AtBut FRE

,
VIπ

e = !ST

They
, for fixed Alo ,

ocs l
, for a refficiently large :

10 m B(S , = non)-- (IM, All#(M,
A

, d)) + (1(m, 2) ) +Film
, All with

Film
,
A) = [cite (4) =t2) at

,
[21M

,
A

,
2
=Steel At

,
Isle

, ) = Sitelde
30 It OM

and In (2
,
A) = Sites-that

.

We shall just Write II
,
In

, Is, Iy to simplify motation.

We show that Ve'so fixed
,

we can find ALO and 2e 10
, 11 such that for n lage enough, foreveryet

with moun+mn- We have (Fil d' for i = 1
,

2
,

3
, 4

cy)

y(0) = 0 .Firstwrite Pt)=1-E2o+gWithD
:

MtContinuonsWithe
, 2etRO

If Luna 3
.
3

. 19 in Durrett's Probability theory and examples 5th Ed)
, which entrils

1 glt) - 1 - - 04/1 t2 #[menS1HIxi
,

2 (xi R (
--

-20 by dominated
mergence

First choose A so such that 2 SetYatE . < ** The choice of I will be explained later.

AIn (1) =2Setat < by (48).

Fr+1 Wehave IIIl S
*

suit) of with 8u(H = /4) )-et
We have 18n(t) -

> /et and bult 0 by (t)

Thres II 115 for a sufficiently large and all i by dominated
convergence.

(ffy)

↑F2 We first check that 5920 s .
t /PI)1 < expl-E04 for IHES .

By (,
(0(t) = &(t) ) = (1-E

2

+ Ey(tll)(1 - t +tgtt)
= 1- --E +ol2)

⑳



Thes 14(E)1 = 1- +olt

Since exp)-E02 = 1
- 0212 +olt) me get 1484)
T &

I Then
, for 16 <3 : (I2 <2 Sor,-le (at * 2 Se

tYY
et e

↑ By apriodicity ,
IPIH11 for te 10

, 21. .

This Est IPN)/ for
Eorn < It <To

,
to that :

πOT
- CR

113) = 2Seat -> Litorne =5 for a sufficiently loree
/

↑

-

Remarks . If X
,
has spen

h with 1(X
,

= b + (2) = 1
,

one gets an analog of the LCLT by

considering

· It is possible to show that

emp mass (1
,(2) Love (Sn= R)-

*
0

REZ

which gives abetter error bound for 1k-mul v .

(see Principles of Random Walk , Spitzer , Chap#,
Sec 7

,
P10)

End of Lecture 4
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