Chapter 2: One bigjeump phenomenon

1) A maximal inequality
2) A local estimate
3) A one -big jump principle

Here we identify a regime where atypical events of the form $\left\{S_{n}=a n\right\}$ with $\left(S_{n}\right)$ random walk typically occur with one big jump (essentially when $\mathbb{B}(X,=n) \sim \frac{c}{\sim} \frac{c}{n}$: heavy tail)

1) A maximal inequality

We stacc with proving on inequality for future use.
Theorem [Fule-Nagaev '71, Derisos-Dieber - Schwer 108]
Assume that X is a \mathbb{R}-valued Ωv with $\mathbb{E}\left[X^{2}\right]<\infty, ~ \in[X]=0$. Let $\left(X_{i}\right)_{i>1}$ beiid having same law as X. Set $S_{n}=X_{1}+\cdots+X_{n}$. There $f k>0$ s.t $\forall_{n} \geqslant 1, x>0$ and $(\geqslant 1$:

$$
\mathbb{P}\left(S_{n}>x \sqrt{n}, X_{1} \leqslant c \sqrt{n}, \ldots, X_{n} \leqslant c \sqrt{n}\right) \leqslant K \exp \left(-\frac{x}{c}\right)
$$

Proof: The idea is to introduce the truncated random wale $\tilde{S}_{n}=\sum_{i=1}^{n} X_{i} 1_{X_{i} s c \sqrt{n}}$. Index, $\mathbb{P}\left(S_{n}>x \sqrt{n}, x_{1} \leqslant c \sqrt{n}, \ldots, X_{n} \leqslant c \sqrt{n}\right) \leqslant \mathbb{S}\left(\tilde{S}_{n} \geqslant x \sqrt{n}\right)$.
To bound this probability we use the "exponential Markov" inequality.
$\mathbb{B}\left(\tilde{S}_{n} \geqslant x \sqrt{n}\right)=\mathbb{B}\left(e^{\frac{\tilde{\zeta}_{n}}{c n}} \geqslant e^{\frac{x}{c}}\right) \leqslant e^{-\frac{x}{c}} \mathbb{E}\left[e^{\frac{\tilde{x}}{\sqrt{n}}}\right]^{n}$ with $\tilde{x}=\times \mathbb{1}_{x \leq c \sqrt{n}}$ ($\Delta \tilde{x}$ depends on n)
We show that $\left[e^{\frac{x}{c n}}\right]=1+O\left(\frac{1}{n}\right)$ and the result will follow.
The idea is to write $e^{x}=1+x+x^{2}-r(x)$ with $r(x)=\frac{e^{x}-1-x}{x^{2}}$, so that

$$
\mathbb{E}\left[e^{\tilde{x} / c c_{n}}\right]=1+\underbrace{\sqrt{\sqrt{x}}\left[\frac{\tilde{x}}{}\right]}_{m_{n}}+\underbrace{\mathbb{E}\left[\left(\frac{\tilde{x}}{\sqrt{n}}\right)^{2} r\left(\frac{\tilde{x}}{\sqrt{n}}\right)\right]}_{S_{n}}
$$

We show that $m_{n}=\partial\left(\frac{1}{n}\right)$ and $s_{n}=\partial\left(\frac{1}{n}\right)$

- For s_{n} : since r is banded on $(-\infty, 1]$, we here $S_{n}=\partial\left(\mathbb{E}\left[\frac{\tilde{x}^{2}}{n}\right]\right)$ (here we ese $(\geqslant 1)$) But $\Phi\left[\tilde{x}^{2}\right] \leqslant \mathbb{E}\left[x^{2}\right]$, thee $s_{n}=\partial\left(\frac{1}{n}\right)$.
|. $F_{o x} m_{n}$: write $m_{n}=\frac{1}{c \sqrt{n}} \mathbb{E}\left[X \mathbb{1}_{x \leq c \sqrt{n}}\right]=-\frac{1}{c \sqrt{n}} \mathbb{E}\left[X \mathbb{1}_{x>c \sqrt{n}]}\right.$ because $\mathbb{E}[X]=0$ But $\mathbb{E}\left[|x| 1_{|x|>c \sqrt{n}]} \leqslant \mathbb{E}\left[|x| \cdot \frac{|x|}{(\sqrt{n}} 1_{|x|>c \sqrt{n}}\right] \leqslant \frac{1}{c \sqrt{n}} \mathbb{E}\left[x^{2}\right]\right.$
Thus $m_{n}=O\left(\frac{1}{n}\right)$ (here we ese $c \geqslant 1$)

Remark The result is false with " $c>0$ " instead of " $\left(\geqslant 1\right.$ ". Indeed, tale $\mathbb{P}\left(x_{1}= \pm 1\right)=\frac{1}{2}, x=1, c=n^{1 / 4}$.
Then $\mathbb{P}\left(S_{n} \geqslant x \sqrt{n}, x_{1} \leq c \sqrt{n}, \ldots, x_{n} \leq c \sqrt{n}\right)=\mathbb{P}\left(S_{n} \geqslant \sqrt{n}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} \mathbb{P}\left(\mathbb{N}\left(0_{1}\right) \geqslant 1\right)$
but $K \exp \left(-\frac{x}{c}\right) \underset{n \rightarrow \infty}{\longrightarrow 0}$
2) A local estimate

We introduce a framework which will allow to treat " $S_{n}>$ an " and " $S_{n}=a n$ " at the save fire.
Fix $T \in(0,+\infty]$ and set $\Delta=[0, T)$. For $m \in \mathbb{R}$ we set $\Delta_{m}=m+\Delta=[m, m+T)$
Condition $\left(H_{\Delta}\right)$ thee exist $c>0$ and $\beta>2$ such that

- If $T=\infty, \mathbb{B}\left(X_{1} \in \Delta_{u}\right)=\mathbb{S}\left(X_{1} \geqslant u\right) \underset{u \rightarrow \infty}{\sim} \frac{C}{u^{\beta}}$
- If $T<\infty, \mathbb{B}(X, \in \Delta u)=\mathbb{S}\left(X_{1} \in[u, u+T)\right) \underset{u \rightarrow \infty}{\sim} \frac{C}{\mu^{1+\beta}}$

Example If X_{1} is \mathbb{Z}-valued and if $B\left(X_{1}=n\right) \underset{n \rightarrow \infty}{\sim} \frac{c}{n^{n+\beta}}$ then X_{1} satisfies $(H \Delta)$ for $T=1$ and $T=\infty$, but not $T=1.5$ (indeed, $B(x, \in[n, n+1.5)) \underset{n \rightarrow \infty}{\sim} \frac{2 C}{n^{n-\beta}}$ and $B(x, \in[n+0,1, n+1.6)]$ $\underset{n \rightarrow \infty}{\sim} \frac{c}{n_{1+\beta}}$)
Remark One con checte that if X_{1} satisfies $\left(H_{\triangle}\right)$ then X_{1} has finite variance (became $p>2$)
 In particular, if X_{1} satisfies $\left(H_{\Delta}\right)$ for $T<+\infty$ then it satisfies (H_{Δ}) for $T=\infty$

Proof: Exercise for next week
End of Lectrue 5

We will use several times the following fact
Fat (y) Undue $\left(H_{\Delta}\right), \mathbb{B}\left(X, \in \Delta_{u}\right) \underset{u \rightarrow \infty}{\sim} \mathbb{P}\left(X_{1} \in \Delta_{u+y}\right)$ uniformly in $|y| \leq \frac{u}{\ln (u)}$, ie $\sup _{\left.|y| \leqslant \frac{u}{(m u()} \right\rvert\,}\left|\frac{\mathbb{B}\left(x, t \Delta_{u}\right)}{\mathbb{P}\left(x_{1} \in \Delta_{\mu+y)}\right.}-1\right| \underset{u \rightarrow \infty}{\longrightarrow} 0$

Theorem (Doney's9, Nagaev '57)
Assume that X_{1} satisfies $\left(H_{\Delta}\right)$ and that $\in\left[X_{1}\right]=0$. Fix $\varepsilon>0$. Then, uniformly in $m \geq \varepsilon n$, $\mathbb{P}\left(\delta_{n} \in \Delta_{m}\right) \underset{n \rightarrow \infty}{\sim} n \mathbb{P}\left(X_{1} \in \Delta_{m}\right)$
That is, $\sup _{m \geqslant \varepsilon_{n}}\left|\frac{\mathbb{B}\left(S_{n} \in \Delta_{m}\right)}{n \mathbb{B}\left(X_{1} \in \Delta_{m}\right)} \quad-1\right| \xrightarrow[n \rightarrow \infty]{\longrightarrow}$
Intuition: $S_{n} \in \Delta_{m}$ typically happens when one of the njeenps is in Δ_{m} (this will be made prase later)

- $\mathbb{P}_{1}^{m, n}=\mathbb{B}\left(S_{n} \in \Delta_{m}, X_{n} \geqslant \bar{m}, \max _{1 \leq k \leq n-1} X_{k}<\bar{m}\right)$
- $P_{0}^{m n}=\mathbb{B}\left(S_{n} \in \Delta_{m}, \max _{1 \leq \leq \leq n} X_{k}<\bar{m}\right)$
- $P_{2}^{m, n}=B\left(S_{n} \in \Delta_{m}, \underset{a \leq j<k \leq n}{\bigcup}\left\{x_{j} \geqslant \bar{m}, X_{R} \geqslant \bar{m}\right\}\right)$

We show that uniformly in $m \geqslant \varepsilon n, P_{1}^{m, n} \sim B\left(X_{1} \in \Delta_{m}\right), \quad P_{0}^{m, n}=0\left(n B\left(X_{1} \in \Delta_{m}\right)\right), P_{2}^{m n n}=0\left(n B\left(X_{1} \in \Delta_{m}\right)\right)$

For $P_{2}^{m, n}: P_{2}^{m, n} \leqslant\binom{ n}{2} \mathbb{P}\left(x_{1} \geqslant \bar{m}, x_{2} \geqslant \bar{m}\right)$

$$
\stackrel{\left.H_{\rho}\right)}{\leqslant} C^{1} n^{2} \frac{1}{\bar{m}^{\beta}} \cdot \frac{1}{\bar{m}^{\beta}}=\frac{n^{2}}{m^{2} \beta} \cdot \ln (m)^{6 \beta} \text {, so } \frac{p_{2}^{m, n}}{n \beta\left(x_{1}, E \Delta m\right)} \leqslant C^{\prime} \frac{n}{m^{2} \beta} \cdot \ln (m)^{6 \beta} \cdot m^{1+\beta}=C^{\prime} \frac{n \cdot \ln \left(m m^{6 \beta}\right.}{m^{\beta-1}} \rightarrow 0
$$ because $\beta-1>1$

For $P_{0}^{m, n}:$ We use the maximal inequality:

$$
P_{0}^{m, n} \leqslant \mathbb{B}\left(S_{n} \geqslant m, \max _{n \leqslant p \leqslant n} x_{k}<\bar{m}\right) \leqslant \mathbb{K} \exp \left(-\frac{m}{\bar{m}}\right)=K \exp \left(-\ln (m)^{3}\right)=0\left(\frac{n}{m^{1+\beta}}\right)
$$

For $P_{1}^{m, n}$: This is more delicate, we need to cavider cases according to the value of S_{n-1}. Since $\frac{\delta_{n}}{n}$ converges in destribucuion (CLT), $\frac{S_{n}}{n^{3 / 4}} \xrightarrow{\mathbb{B}} 0$. Then write

$$
P_{1}^{m, n}=Q_{1}^{m, n}+Q_{2}^{m, n}+Q_{3}^{m, n} \text { with }
$$

$$
\left\lvert\, \begin{aligned}
& Q_{1}^{m, n}=\mathbb{B}\left(S_{n} \in \Delta_{m}, X_{n} \geqslant \bar{m}, \max _{1 \leqslant k \leq n-1} X_{k}<\bar{m}, S_{n-1}>\frac{m}{\ln (m)}\right) \\
& Q_{2}^{m, n}=\mathbb{B}\left(S_{n} \in \Delta_{m}, X_{n} \geqslant \bar{m}, \max _{1 \leq k \leq n-1} X_{k}<\bar{m},-n^{3 / 4}<S_{n-1}<\frac{m}{\ln (m)}\right) \\
& Q_{3}^{m, n}=\mathbb{B}\left(S_{n} \in \Delta_{n}, X_{n} \geqslant \bar{m}, \max _{1 \leq k \leq n, 1} X_{k}<\bar{m}, S_{n-1}<-n^{3 / 4}\right)
\end{aligned}\right.
$$

We first show $Q_{1}^{m, n}, Q_{3}^{m, n}=O\left(B\left(X_{1} \in \Delta_{m}\right)\right)$:

- For $Q_{1}^{m, n}$: By the maximal inequality, $\left.Q_{1}^{m, n} \leq \mathbb{S}\left(S_{n-l}\right\rangle \frac{m}{\ln (m)}, \max _{1 \leq k \leq n-1} x_{k}<\bar{m}\right) \leq K \exp \left(-\ln \left(\left.m\right|^{2}\right)=O\left(\mathbb{S}\left(x_{1} \in \Delta_{m}\right)\right)\right.$.
- For $Q_{3}^{m, n}: Q_{3}^{m, n} \leqslant \sum_{i<-n^{3 / 4}} \mathbb{P}\left(S_{n-2}=i, X_{n} \in \Delta_{m-i}\right)$

$$
\begin{aligned}
& =\sum_{i<-n^{3 / 4}} P\left(S_{n-1}=i\right) \mathbb{P}\left(X_{n} \in \Delta_{m-i}\right) \\
& \leqslant \sum_{i<-n^{3 / 4}} P\left(S_{n-1}=i\right) \sup _{3 / 4} \mathbb{P}\left(X_{1} \in \Delta_{m+j}\right) \\
& =\mathbb{P}\left(S_{n-1}<-n^{3 / 4}\right)=o(1)
\end{aligned}
$$

- For $Q_{2}^{m_{1} n}: Q_{2}^{m n}=\mathbb{B}\left(\max _{1 \leqslant k \leq n-1} X_{k}<\bar{m},-n^{3 / 4}<S_{n-1}<\frac{m}{\ln (m)}, x_{n} \geqslant \bar{m}, X_{n} \in \Delta_{m-S_{n-1}}\right)$

$$
=\mathbb{B}\left(\max _{1 \leq k \leq n-1} x_{k}<\bar{m},-n^{3 / 4}<S_{n-1}<\frac{m}{\operatorname{en}(m)}, x_{n} \in \Delta_{m-S_{n-1}}\right)
$$

because $m-\frac{m}{\ln (m)} \geqslant \bar{m}$ for n leage enough.
Ob serve that by assumption $P\left(X_{n} \in \Delta_{m-j}\right) \sim B\left(X_{n} \in \Delta_{m}\right)$ uniformly for $-n^{3 / 4}<j<\frac{m}{\ln (m)}$ (by fact (y))
Thus $Q_{2}^{m, n} \underset{n \rightarrow}{\sim} \mathbb{B}\left(\max _{i \leq b \leq n-1} X_{k}<\bar{m},-n^{3 / 4}<S_{n-1}<\frac{m}{\ln (m)}\right) \mathbb{B}\left(X_{1} \in \Delta_{m}\right)$
End of lecture 6
If remceius to check that:

- $\mathbb{B}\left(-n^{3 / 4}<S_{n-1}<\frac{m}{\ln (m)}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow}$, which is dear since $\frac{S_{n-1}}{\sqrt{n}}$ con verges in distribution
- $\mathbb{B}\left(\max _{1 \leq k \leq n-1} X_{R}<\bar{m}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow}$;
(indeed, for two event $\left.A, B, P(A \cap B)=1-\mathbb{B}(A \cup B) \geqslant 1-\mathbb{P}(A)-\mathbb{P}(B)=1-\mathbb{P}\left(A^{c}\right)-\mathbb{P}\left(B^{c}\right)\right)$
this comes from the fact that $\mathbb{B}\left(\max _{1 \leq k \leq n} X_{k}\langle\bar{m})=\left(1-\mathbb{B}\left(x_{1}>\bar{m}\right)\right)=\exp \left(-n \mathbb{P}\left(x_{1}>\bar{m}\right)(1+(1))\right)\right.$ and $n \mathbb{B}\left(x_{1}>\bar{m}\right) \sim c^{\prime} \frac{n}{m^{\beta}} \cdot \ln (m)^{3 \beta} \xrightarrow[n \rightarrow \infty]{\longrightarrow}$ since $\beta>2$

Remake There hes been quite some work to find the "hest" sequence m_{n} such that the theorem holds uniformly for $m \geqslant m_{n}$ (we have clown that $m_{n}=\varepsilon n$ works).
3) A ore-big-jemp principle

We beep the previous framework: $T \in(0,+\infty]$, we set $\Delta=[0, T), D_{u}=[u, \mu+T)$ and assume that X_{1} satisfies $\left(H_{\Delta}\right)$ and that $\mathbb{E}\left[X_{1}\right]=0$.

Notation. Set $\left.V_{n}=\min \varepsilon 2 \leq j \leq n: X_{j}=\max \left(x_{1}, \ldots, x_{n}\right)\right\}$

- Set $\left(\hat{x}_{1}, \ldots, \hat{x}_{n-1}\right)=\left(x_{1}, \ldots, x_{V_{n-1},}, x_{V_{n}+1}, \ldots, x_{n}\right)$

Fix a sequence $\left(x_{n}\right)$ such that $\operatorname{liminif}_{n \rightarrow \infty} \frac{x_{n}}{n}>0$.
Theorem (ave big jump principle, Arunendariz al Loolabis '11)
We have $d_{T V}\left(\left(\hat{X}_{1}, \ldots, \hat{X}_{n-1}\right)\right.$ under $\left.\mathbb{P}\left(\cdot \mid s_{n} \in A_{x_{0}}\right),\left(x_{1}, \ldots, x_{n-1}\right)\right) \underset{n \rightarrow \infty}{\longrightarrow}$, that is
$\sec _{p}\left|\mathbb{B}\left(\left(\hat{X}_{1}, \ldots, \hat{X}_{n-1}\right) \in \mathbb{A} \mid s_{n} \in \Delta_{x_{n}}\right)-\mathbb{B}\left(\left(x_{1, \ldots,} x_{n-1}\right) \in \mathbb{A}\right)\right| \underset{n \rightarrow \infty}{\longrightarrow} 0$ $A \in B\left(Q^{n-1}\right)$

This never that under $\mathbb{P}\left(\cdot \mid S_{n} \in \Delta_{x_{n}}\right)$, once the biggest jeep is removed, the remaining r.v are esymptratically iid with same lave as X_{1} !

In practice, to show that a properly holds with probability tending to 0 or 1 for $\left(\hat{x}_{1}, \ldots, \hat{x}_{n-1}\right)$ under $P\left(\cdot \mid s_{n} \in \Delta_{x_{n}}\right)$ one can show that it holds for $\left(X_{1, \ldots,} X_{n-1}\right)$ (which are id!)

Before proving this, let us see a striking consequence.
Corollary set $D_{n}=\operatorname{man}\left(x_{1}, \ldots, x_{n}\right)$ and let $D_{n}^{(2)}$ be the second largest element of $\left(x_{1} \ldots, x_{n}\right)$. Then:
(1) $\forall u \geqslant 0 \mathbb{B}\left(\left.\frac{D_{n}^{(2)}}{n^{\mu, \beta}} \leqslant u \right\rvert\, S_{n} \in \Delta x_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} \exp \left(-\frac{c_{0}}{\mu \beta}\right)$ with $c_{0}=\left\{\begin{array}{l}c \text { if } T=\infty \\ \frac{c}{\beta T} \text { if } T=\infty\end{array}\right.$

Now assure $T<\infty$
(2) $\frac{D_{n}-x_{n}}{\sigma \sqrt{n}}$ under $\mathbb{P}\left(\cdot \mid S_{n} \in \Delta_{x_{n}}\right) \xrightarrow{(a)} N(0,1)$ with $\sigma^{2}=Y_{\text {au }}\left(X_{1}\right)$
(3) $\frac{D_{n}}{x_{n}}$ under $\mathbb{P}\left(\cdot \mid s_{n} \in \Delta_{x_{n}}\right) \xrightarrow{B} 1$

Thus for $T<\infty$ we have
 Fluctuation of order \sqrt{n}; second, third, et. la lagos t jumps of order $n{ }^{1 / B}$.
wuiforn time between lend
 F_{∞} thus, the probability is $\left(1-P\left(x_{1} \geqslant u_{n} n^{\frac{1}{P}}\right)\right)^{n-1}$

$$
=\exp \left((n-1) \ln \left(1-\mathbb{P}\left(x_{1} \geqslant \mu^{\frac{1}{\mathbb{B}}}\right)\right)\right)
$$

But me have seen that $B\left(x_{1} \geqslant u n^{1 / \beta}\right) \underset{n \rightarrow \infty}{\sim} \frac{c_{0}}{u^{\beta}}$, and the result follows.
(2) Observe that $\frac{D_{n}-x_{n}}{\sigma \sqrt{n}}=\frac{S_{n}-x_{n}}{\sigma \sqrt{n}}-\frac{\left(\hat{X}_{1}+\cdots+\hat{x}_{n-1}\right)}{\sigma \sqrt{n}}$

Under $B\left(\cdot\left|S_{n} \in \Delta_{x_{n}}\right|, \quad\left|S_{n}-x_{n}\right| \leq T\right.$, so $\frac{S_{n}-x_{n}}{\sigma \sqrt{n}} \underset{n \rightarrow 0}{\mathbb{P}}$. and $\frac{\hat{X}_{1}+\cdots+\hat{x}_{n-1}}{\sigma \sqrt{n}} \frac{(d)}{n \rightarrow \infty} N(0,1)$ by the central livid theorem. The result follows
(3) Since $\frac{D_{n}}{x_{n}}-1=\frac{\sigma \sqrt{n}}{x_{n}} \cdot \frac{D_{n}-x_{n}}{\sigma \sqrt{n}}$ and $\frac{\sigma \sqrt{n}}{x_{n}} \underset{n \rightarrow 0}{\longrightarrow}$, this follows from (2).

Proof of the theorem
Let $\hat{\mu}_{n}$ be the lew of $\left(\hat{x}_{1}, \ldots, \bar{x}_{n-1}\right)$ under $\mathbb{P}\left(. \mid S_{n} \in \Delta_{x_{n}}\right)$
Let μ_{n} be the lar of $\left(x_{1}, \ldots, x_{n-1}\right)$
To show that $\underset{A \in B\left(R^{n-1}\right)}{ }\left|\mu_{n}(A)-\hat{\mu}_{n}(A)\right| \underset{n \rightarrow \infty}{\longrightarrow 0}$ the idea is to find a "good "event E_{n} with
(1) $\mu_{n}\left(E_{n}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} 1$
(2) $\sup _{A C E_{n}}\left|\mu_{n}(A)-\hat{\mu}_{n}(A)\right| \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0$

$$
\begin{aligned}
& A \in 8\left(B^{\prime}\right)
\end{aligned}
$$

Indeed, by (2) we then have $\hat{\mu}_{n}\left(E_{n}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow}$, so
$\sup _{A \in 8\left(B^{\prime}\right)}\left|\mu_{n}(A)-\hat{\mu}_{n}(A)\right| \leq \sup _{A \in B\left(B^{n}\right)}\left|\mu_{n}\left(A \cap E_{n}\right)-\hat{\mu}_{n}\left(A \cap E_{n}\right)\right|+\mu_{n}\left(E_{n}^{c}\right)+\hat{\mu}_{n}\left(E_{n}^{c}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow}$

To do this, set $E_{n}=\left\{a=\left(a_{1}, \ldots, e_{n-1}\right) \in \mathbb{R}^{n-1}:\left|a_{1}+\cdots+a_{n-1}\right| \leqslant n^{3 / 4}\right.$ and $\left.\max _{1 \leq i \leq n-1} a_{i} \leqslant n^{3 / 4}\right\}$
$\underline{\text { We check (1) }} \mu_{n}\left(E_{n}^{c}\right) \leq \mathbb{P}\left(\left|S_{n-1}\right|>n^{3 / 4}\right)+\mathbb{B}\left(\max _{1 \leq j} X_{j}>n^{3 / 4}\right)$

- The fist tee is $0(1)$ sine $\frac{S_{n-1}}{\sqrt{n}}$ converges in distribution
- The second lem is $1-\left(1-\frac{\left.\beta\left(x_{1}>n^{3 / 4}\right)\right)^{n-1}}{\sim \frac{c}{c_{0}^{3} \beta}} \xrightarrow[n \rightarrow \infty]{ } \quad\right.$ since $\frac{n}{n^{\frac{3}{n} \beta}} \rightarrow 0 \quad(\beta>2)$

Ne check (2): for $a=\left(a_{1}, \ldots, a_{n-1}\right) \in \mathbb{R}^{n-1}$, observe that

$$
\left\{\left(\hat{x}_{1}, \ldots, \hat{x}_{n-1}\right)=a, S_{n} \in \Delta_{x_{n}}\right\}=\bigcup_{i=1}^{n}\left\{\left(x_{1, \ldots,} x_{i-1}, x_{i+1}, \ldots, x_{n}\right)=a, x_{i} \in \Delta_{x_{n}-a_{1}, \ldots, a_{n-1}}\right\}
$$

and that the curios is disjoint. Thee

$$
\widehat{\mu_{n}}(a)=\mu_{n}(a) \times \frac{n \mathbb{P}\left(X_{1} \in \Delta x_{n}-a_{1}-\cdots a_{n-1}\right)}{\mathbb{P}\left(S_{n} \in \Delta_{x_{n}}\right)}
$$

$=1+\varepsilon_{n}(a)$ with $\operatorname{sep}_{a \in E_{n}} \backslash \varepsilon_{n}(e) \mid \xrightarrow[n \rightarrow \infty]{\longrightarrow}$ by the theorem of 2$)$.
This entails $\sup _{A C E_{n}}\left|\hat{\mu}_{n}(A)-\mu_{n}(A)\right|=1+o(1)$.

Indeed, for $A\left(E_{n},\left|\hat{\mu}_{n}(A)-\mu_{n}(A)\right| \leqslant \sum_{a \in E_{n}}\left|\hat{\mu_{n}}(a)-\mu_{n}(a)\right| \leqslant \sum_{a \in E_{n}} \mu_{n}(a) \varepsilon_{n}(a) \leqslant \sup _{a \in E_{n}}\left|\varepsilon_{n}(a)\right|\right.$.
End of lectur 7

