Chapter 3: Application to roudon trees
Outlive: 1) Coding Bienaymé trees
2) The cycle lemme and the Vervaat transform
3) Condensation in subcritical tres

In short, the gal is to identify. condensation phenomenon / one big degree phenomenon in large subcritical Bienaymé trees with heary-tailed offspring distribution.

1) Coding Bienaymé trees
a) Trees

Here me ware with plane trees (sometimes called rooted ordered treas), \&o example:

$$
\begin{aligned}
& T_{1}=\{\phi, 1,2,21,22\} \\
& T_{2}=\{\phi, 1,2,11,12\}
\end{aligned}
$$

Formally, they ar defined as certain sets of labels (sequences of integers)
Definition Set $U=\bigcup_{n \geqslant 0} N^{n}$ with $N=\{1,2, \ldots\}$ and $N^{0}=\{\phi\}$.
A plane tree T is a finite subsided of U (culled vertices) such that
(1) $\phi \in T$ (called the coot)
(2) if $\left(V_{1} \ldots, V_{n}\right) \in T$, then $\left(V_{1}, \ldots, V_{n-1}\right) \in T$ (called the pent of $\left.\left(v_{1}, \ldots, v_{n}\right)\right)$
(3) If $\left.v=C v_{1 . \ldots,}, v_{n}\right) \in T$, there is an integer $k_{v}(T) \geqslant 0$ such that $\left(v_{1}, \ldots, v_{n}, i\right) \in T$ iff $i \leqslant k_{v}(T)$ C called the number of children of v, or a bit abusively degree of v)
W_{k} denote by $I T \mid$ the size of T nits number of vertices s
Informally, a plane tree can be seen as a genealogical tree where individuals or the vertices

Definition The lexicographical order on U is defined as follows: $v<w$ if there enos $u \in U$ such that $v=u\left(v_{1} \ldots, v_{n}\right), w=\mu\left(w_{1}, \ldots, w_{n}\right)$ and $v_{1}<w_{1}$.

Definition Let T be a tree with size n, with reties ordered in lexicographical order: $u_{0}<u_{1}<\cdots<u_{n-1}$. The Luhassiewirg path $V(T)=\left(v_{0}(T)_{1} \ldots, v_{n}(T)\right)$ is defined by:

- $W_{0}(T)=0$

$$
\text { - } W_{i+1}(T)=w_{i}(T)+k_{\mu_{i}}(T)-1 \text { for } 0 \leq i \leqslant|T|-1 \text {. }
$$

Example

Proposition The map $\{$ tries with n vertion $\} \longrightarrow \bar{S}_{n}$

$$
T \quad \longmapsto\left(k_{\mu_{i}}(T)-1: 0 \leqslant i \leqslant n-1\right)
$$

is a bijection, where $\bar{S}_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in\left\{-1,0,1, \ldots \xi^{n}: x_{1}+\cdots+x_{n}=-1, x_{1}+\cdots+x_{i}>-1\right.\right.$ for $\left.1 \leq i \leq n\right\}$
This can be readily shown by induction. The complete proof is a bit tedious to write and it is skipped here (the reader shad convince him /her that this is true)
b) Bienayné trees

Bienayue trees ore, roughly speaking, random trees which describe the gevealogical tree of a population where individuals have a random number of children, independently, distributed according to a save probability distribution, called the offspring distribution.

Such models were courideed by Bienuymé (1845) and Galton R Watson (1875) who were intreested en estimating the probability of extinction of noble names.

Let $\mu=(\mu(i): i \geqslant 0)$ be a probability distribution on \mathbb{Z}_{+}, called the offspring distribution.
Ne always assume that $\mu(0)+\mu(1)<1$.
Let π be the set of ell finite trees (π is countable)
Theorem For a finite kea $T \in \mathbb{T}$, we define

$$
\mathbb{D}_{\mu}(T)=\prod_{\mu \in T} \mu\left(k_{\mu}(T)\right)
$$

If $\sum_{i=1}^{\infty} i \mu(i) \leqslant 1$ then \mathbb{P}_{μ} is a probability measure on T
This is of cause connected to the fact that a μ-branching process dies out ass if $\sum_{i=0}^{\infty} \mu(i) \leq 1$ (Bienaymé 1845, Galton- Watson (1875, Steffeussen 1930).

Proof Set $c=\sum_{t \in A} P_{\mu}(t)$. Ne show that $c=1$.
Step 1: By decomposing according to the number of children of the root, we have:

$$
c=\sum_{k \geqslant 0}^{\infty} \sum_{\substack{t \in \pi \\ k \neq t)}}^{\infty} \mathbb{P}_{\mu}(t)=\sum_{k \geqslant 0} \sum_{k_{1} \rightarrow t_{k} \in \mathbb{T}} \mu(k) B_{\mu}\left(l_{k}\right) \cdots P_{r}\left(t_{k}\right)=\sum_{k \geqslant 0} \mu(k) c^{k}
$$

Step 2 Set $f(s)=\sum_{k=0}^{\infty} \mu(k) s^{k}-s$ then $f(0)=\mu(0)>0, f(1)=0, f^{2}(1) \leq 0$ and $g^{\prime \prime}>0$ on $[0,1]$
Thus the only solution of $g(s)=0$ on $[0,1]$ is $s=1$.
Step 3 We check that $c \leq 1$ by constructing a random variable whose "low" is \mathbb{B}_{r}. To do thus, tet $\left(K_{u}\right)_{u \in U}$ be ind random variables with law μ. St

$$
\widetilde{T}=\left\{\left(\mu_{1}, \ldots, \mu_{n}\right) \in U: \mu_{i} \leqslant K_{\left(\mu_{1}, \ldots, \mu_{i-1}\right)} \text { for every } 1 \operatorname{sisn}\right\}
$$

(intuitively, K_{u} is the member of chithen of $u \in U$, if u is in the tree). Observe that τ is possibly infinite. But for $t \in \pi$, we have

$$
\mathbb{P}(\tau=t)=\mathbb{P}\left(K_{u}=k_{\mu}(t) \text { for every } \mu b t\right)=\prod_{u \in t} \mu\left(k_{\mu}(t)\right)=P_{\mu}(t)
$$

Thee $c=\sum_{t \in \mathbb{T}} \mathbb{P}_{\mu}(t)=\sum_{t \in \mathbb{T}} P(\tau=t)=B(\tau \in \mathbb{T}) \leq 1$
By the first two skeps we conclude that $c=1$.

Remake When $\sum_{i=0}^{\infty} i_{\mu}(i)>1$, it is possible to define a probecesility measure \mathbb{B}_{μ} on the set of all plane (not necasseiely finite) trees such that (x) holds for finite trees (\mathbb{P}_{μ} is the law of τ in the previous proof).

In the sequel we always osume that $\sum_{i=0}^{\infty} i \mu(i) \leq 1$
A B_{μ} random tree will be a Π-valued random variable, with lan \mathbb{B}_{μ}.
To mobs the comection with the Lublesievirz path, we introduce the random walk $\left(W_{n}\right)_{n \geqslant 0}$: Let $\left(X_{i}\right)_{i \geqslant 1}$ be in randan variables with law $P\left(X_{1}=k\right)=\mu(k+1)$ for $k \geqslant-2$.
Set $w_{0}=0$ and $w_{n}=x_{1}+\ldots+x_{n}$ for $n \geqslant 1$.
Also set $\zeta=\operatorname{ing}\left\{k \geqslant 1: W_{R}=-2\right\} \in \mathbb{N} \cup\{+\infty\}$
Proposition Let Ψ be a B_{μ} render tree. Then

$$
\left(W_{0}(\gamma), \ldots, W_{|\tau|}(\tau)\right)=\left(W_{0}, \ldots, W_{3}\right)
$$

The proof is straightforward using (y) by computing the probability that the 2 random vectors are equal to $\left(w_{0}, \ldots, w_{n}\right)$.

In the sequel, τ_{n} denotes a \mathbb{B}_{μ} random tree conditioned on having n vertices C we implicitly restrict to values of n such that $P(|\gamma|=n)>0)$.
Corollary • $|\tau| \stackrel{\text { lav }}{=} 3$

- $\left(W_{0}\left(T_{n}\right)_{1}, \ldots, W_{n}\left(Y_{n}\right)\right) \stackrel{\text { law }}{=}\left(W_{0}, \ldots, W_{n}\right)$ under $\mathbb{P}(\cdot(B=n)$

The main difficulty is that this condihoning is "non local". To make it "local" we we are going to use the so-called cycle lemma.

End of lectrue 8

