Exercise. Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. standard Gaussian $\mathcal{N}(0,1)$ random variables. Set $S_0 = 0$ and for $n \geq 1$ set $S_n = X_1 + \dots + X_n$. Fix a > 0. Show that $S_n - an$ under the conditional law $\mathbb{P}(\cdot \mid S_n \supset an)$ converges in distribution as $n \to \infty$.

Remark. Equivalently, this amounts to showing that Z_n converges in distribution, where Z_n is a random variable with law characterised by the identity $\mathbb{E}[f(Z_n)] = \mathbb{E}[f(S_n - an) \mid S_n > an]$

for every $f \ge 0$ measurable.

l (

Solution: We next cdfs. For
$$x \ge 0$$
:
 $B(S_n - an \ge x | S_n > an) = \frac{B(S_n \ge an + x)}{B(S_n > an)}$
Since $\frac{S_n}{\sqrt{n}} \stackrel{(a)}{=} N(q_1)$, We have $B(S_n \ge an + x) = \frac{1}{\sqrt{n}} \int_{a\sqrt{n}}^{\infty} e^{-y^2/2} dy$
By the change of variables $y = a\sqrt{n} + \frac{3}{2}$, we get

$$B(S_n \ge a_{n+2}) = \frac{1}{\sqrt{2\pi}} \int_{\infty}^{\infty} e^{-(a\sqrt{n} + \frac{1}{\sqrt{n}})^2/2} \frac{d_2}{\sqrt{n}}$$
$$= \frac{1}{\sqrt{2\pi}} e^{-a^2n} \int_{\infty}^{\infty} e^{-ag} - \frac{a^2}{\sqrt{n}} d_3$$

But
$$\int_{x}^{a} e^{-\alpha \beta - 3/n} d\beta = \int_{x}^{b} \int_{x}^{a} e^{-\alpha \beta} d\beta = \int_{x}^{b} \int_{x}^{a} e^{-\alpha \beta} d\beta = -\alpha x$$

Thus $\mathbb{P}(\int_{x} \int_{y}^{a} an + x (\int_{x} \int_{y}^{b} an + x (\int_{y}^{b} \int_{y}^{a} an + x (\int_{y}^{b} h a + x (\int_$

Remarks. Performing a change of variables so that the domain of integration does not depend on n is a result idea. Alternatively, one could have not $S_g^{\infty} e^{-nH2} du \sim \frac{1}{2} e^{-3^2/2}$