Exercise. Let $\left(X_{i}\right)_{i \geq 1}$ be i.i.d. random variables. Assume that X_{1} is integer-valued, aperiodic, satisfies Cramer condition, with $\mathbb{E}\left[X_{1}\right]=0$ and has positive variance. Set $S_{n}=X_{1}+\cdots+X_{n}$. Show that

$$
\frac{1}{n} \sum_{k=1}^{n}\left|X_{k}\right| \quad \text { under } \quad \mathbb{P}\left(\cdot \mid S_{n}=0\right)
$$

converges in probability
Set $c=\mathbb{E}\left[\left.|x|\right|_{n}\right.$
$W_{\text {rite }} \mathbb{B}\left(\left.\left|\frac{1}{n} \sum_{k=1}^{n}\right| X_{k}|-c| \geqslant \varepsilon \right\rvert\, S_{n}=0\right) \leqq \frac{1}{\mathbb{B}\left(S_{n}=0\right)} \mathbb{P}\left(\left|\frac{1}{n} \sum_{R=1}^{n}\right| X_{k}|-c| \geqslant \varepsilon\right)$
by the $L C L T, \mathbb{B}\left(S_{n}=0\right) \sim \frac{c}{\sqrt{n}}$
To control the munerotor, 2 possibilities.
Solution:
It is a simple matter to check that $\mid x_{1}$, and - $x_{i} \mid$ sehisfy Creamer's arsemphion, so that $\mathbb{S}\left(\frac{1}{n} \sum_{k=1}^{n}\left|X_{k}\right| \geqslant c+\varepsilon\right)$ and $B\left(\frac{1}{n} \sum_{k=1}^{n}\left|X_{k}\right| \leqslant c-\varepsilon\right)$ de cay experientially fest, which gives the result

Solution 2
By Bienganne-TCelychei's nequediry, $B\left(l \frac{1}{n} \sum_{k=1}^{n}\left(X_{k}|-c| \geqslant \varepsilon\right) \leq \frac{1}{n \varepsilon^{2}} V_{a}\left(\mid x_{1}\right)\right)$

$$
\text { so } \mathbb{B}\left(\left.\left|\frac{1}{n} \sum_{k=1}\right| X_{k}|-c| \geqslant \varepsilon \right\rvert\, s_{n}=0\right) \leqslant \frac{c}{\sqrt{n}}
$$

Remark Ir solution 2 we only reed finite variance on X_{1} (not Cremes condition)

