Exercise 3 for March 14th

Exercise. Let $(X_i)_{i\geq 1}$ be i.i.d. random variables. Assume that X_1 is integer-valued, aperiodic, satisfies Cramer condition, with $\mathbb{E}[X_1] = 0$ and has positive variance. Set $S_n = X_1 + \cdots + X_n$. Show that

$$\frac{1}{n} \sum_{k=1}^{n} |X_k| \quad \text{under} \quad \mathbb{P}\left(\cdot \mid S_n = 0\right)$$

converges in probability.

Set
$$c = \mathbb{F}[|X_i|]_{\overline{k}}$$

Write $\mathcal{B}(|\frac{1}{N}|\sum_{k=1}^{N}|X_k|-c|\geq \epsilon|S_{n>0}) \leq \frac{1}{\mathcal{B}(|S_{n>0}|)} \mathcal{B}(|\frac{1}{N}|\sum_{k=1}^{N}|X_k|-c|\geq \epsilon)$

by the LCLT, IB(Sn=0) ~ = To control the numerotor, 2 possibilities

Solution!

It is a simple matter to check that $|X_i|$ and $|X_i|$ satisfy. Cremer's assumption, so that $\mathbb{S}(\frac{1}{n},\frac{2}{n})$ $|X_i| \ge C + \varepsilon$) decay exponentially fast, which gives the result

Solution 2

By Bienagne-Tolohychev's nequality, $\mathcal{B}(\left[\frac{1}{N}\sum_{k=1}^{N}|X_{kk}|-c|\geq E\right)\leq \frac{1}{N_{\epsilon}^{2}}$ Var (X_{ϵ})

so
$$\mathbb{B}\left(\left|\frac{1}{N}\sum_{k\geq 1}|X_k|-c\right|\geqslant \varepsilon\right|S_{N>0}\right)\leq \frac{c}{\sqrt{n}}$$

Demark In solution 2 me only need finite varion e on X, (not Crowner's condition)