Exercise 4 for April 11

Exercise. Let $\left(X_{i}\right)_{i \geq 1}$ be i.i.d. random variables. Assume that X_{1} is integer-valued non-constant, aperiodic, with $\mathbb{E}\left[X_{1}^{2}\right]<$ ∞ and $\mathbb{E}\left[X_{1}\right]=0$ Set $S_{n}=X_{1}+\cdots+X_{n}$.
(1) Show that $\frac{\max \left(X_{1}, \ldots, X_{n}\right)}{\sqrt{n}}$ converges to 0 in probability.
(2) Show that the same result holds under the conditional probability $\mathbb{P}\left(\cdot \mid S_{n}=0\right)$.

Hint. First show that $\frac{\max \left(X_{1}, \ldots, X_{\lfloor n / 2\rfloor}\right)}{\sqrt{n}}$ converges to 0 in probability under the conditional probability $\mathbb{P}\left(\cdot \mid S_{n}=0\right)$.
(1) Fix $\varepsilon>0$. W_{e} have $\mathbb{P}\left(\left|\frac{\max \left(x_{1}, \ldots, x_{n}\right)}{\sqrt{n}}\right| \geqslant \varepsilon\right) \leqslant \mathbb{P}\left(\frac{\max \left(\left|x_{1}\right| \ldots,\left|x_{n}\right|\right)}{\sqrt{n}} \geqslant \varepsilon\right)=1-\mathbb{B}\left(\left|x_{1}\right|<\varepsilon \sqrt{n}\right)^{n}=1-\exp \left(n \ln \left(1-\mathbb{B}\left(\left|x_{1}\right| \geqslant \varepsilon \sqrt{n}\right)\right)\right.$, Since $\ln (1-x) \underset{x \rightarrow 0}{\sim}-x$, it suffices to show that $n \mathbb{P}\left(\left|X_{1}\right| \geqslant \varepsilon \sqrt{n}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow}$.
To see this, write $n \mathbb{P}\left(\left|X_{1}\right| \geqslant \varepsilon \sqrt{n}\right)=n \mathbb{P}\left(X_{1}^{2} \geqslant \varepsilon^{2} n\right) \leqslant \frac{1}{\varepsilon^{2}}\left[X_{1}^{2} \mathbb{I} X_{1}^{2} \geqslant \varepsilon^{2} n\right] \xrightarrow[n \rightarrow \infty]{\longrightarrow}$ by dominated convergence
(2) Since $P\left(\left.\frac{\max \left(X_{1, \ldots}, x_{n}\right)}{\sqrt{n}} \geqslant \varepsilon \right\rvert\, S_{n}=0\right) \leqslant B\left(\left.\frac{\operatorname{mox}\left(X_{1, \ldots,}, X_{L n / 2]}\right)}{\sqrt{n}} \geqslant \varepsilon \right\rvert\, S_{n}=0\right)+\mathbb{P}\left(\frac{\operatorname{mex}\left(X_{\lfloor n / 2\rfloor+1, \ldots,} X_{n}\right)}{\sqrt{n}} \geqslant \varepsilon\left(S_{n}=0\right)\right.$
and since $\left(X_{L n / 2\rfloor+1}, \cdots, X_{n}\right)$ hes the save lew as $\left(X_{1, \ldots}, X_{n-n / 2 J}\right)$ under $B\left(\cdot \mid S_{n}=0\right)$, it suffices to show the hint (formally we should do it with $\ln (25+1$, but the reasoning is the same)

For this the idea is to use an absolute continuity argument by writing, using the Marka property, $P\left(\left.\frac{\max \left(x_{1, \ldots}, x_{L n / 25}\right)}{\sqrt{n}} \geqslant \epsilon \right\rvert\, S_{n}=0\right)=\mathbb{E}\left[\mathbb{1}_{\frac{\operatorname{mox}\left(x_{1-\cdots,}, x_{L n / 2]}\right)}{\sqrt{n}} \geqslant \varepsilon} \frac{\phi_{n-L n / 2}\left(-S_{L n / 2]}\right)}{\phi_{n}(0)}\right]$
with $\phi_{n}(k)=\mathbb{P}\left(S_{n}=k\right)$. By the local central limit theorem, $\exists c>0$ s.t $\forall n \geqslant 1, \forall k \in \mathbb{Z}$:

- $\phi_{n-\ln / 2 \mathrm{~S}}(k) \leq \frac{c}{\sqrt{n}}$
- $\phi_{n}(0) \geqslant \frac{1}{c \sqrt{n}}$.

This $P\left(\frac{\max \left(X_{1, \ldots}, X_{L n / 2]}\right)}{\sqrt{n}} \geqslant \varepsilon\left(S_{n}=0\right) \leqslant C^{2} P\left(\frac{\max \left(X_{1, \ldots, X_{L n(2)}}^{\sqrt{n}}\right.}{2} \geqslant t\right) \xrightarrow[n \rightarrow \infty]{ }\right.$ by 1$)$.

