Exercise 4 for April 11

Exercise. Let $(X_i)_{i\geq 1}$ be i.i.d. random variables. Assume that X_1 is integer-valued non-constant, aperiodic, with $\mathbb{E}\left[X_1^2\right] < \infty$ and $\mathbb{E}\left[X_1\right] = 0$ Set $S_n = X_1 + \cdots + X_n$.

- (1) Show that $\frac{\max(X_1, \ldots, X_n)}{\sqrt{n}}$ converges to 0 in probability.
- (2) Show that the same result holds under the conditional probability $\mathbb{P}(\cdot \mid S_n = 0)$.

Hint. First show that $\frac{\max(X_1, \dots, X_{\lfloor n/2 \rfloor})}{\sqrt{n}}$ converges to 0 in probability under the conditional probability $\mathbb{P}(\cdot \mid S_n = 0)$.

(1) Fix ero We have
$$\mathbb{P}\left(|\underbrace{\operatorname{max}(\chi_{1,\dots,\chi_{k}},\chi_{k})}_{\forall n}\right) \leq 0$$
 is $\mathbb{P}\left(|\underbrace{\operatorname{max}(\chi_{1,\dots,\chi_{k}},\chi_{k})}_{\forall n}\right) \leq 0$.
Since $\ln(1-2), v_{1}-z_{1}$ if suffices to show that $\mathbb{E}\left[[X_{1}] \geq (\overline{v_{1}}) \xrightarrow{1} 0\right]$.
To see this, write $\mathbb{E}\left[[X_{1}] \geq (\overline{v_{1}}) = \mathbb{E}\left[X_{1}^{2} \geq 1\right]\right] \xrightarrow{1} \mathbb{E}\left[[X_{1}^{2} \geq 1\right] \xrightarrow{1} 0$.
To see this, write $\mathbb{E}\left[[X_{1}] \geq (\overline{v_{1}}) > \mathbb{E}\left[[X_{1}] \geq (\overline{v_{1}}) > \mathbb{E}\left[X_{1}^{2} \geq 1\right]\right] \xrightarrow{1} 0$.
(2) Since $\mathbb{E}\left[[\underbrace{\operatorname{max}(X_{1,\dots,\chi_{k}})}_{\forall n} \geq \mathbb{E}\left[[X_{n}=0\right]\right] \leq \mathbb{E}\left[[\underbrace{\operatorname{max}(X_{1,\dots,\chi_{k}})}_{\forall n} \geq \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left([\underbrace{\operatorname{max}(X_{1,\dots,\chi_{k}})}_{\forall n} \geq \mathbb{E}\left[[X_{n}=0\right]\right] + \mathbb{E}\left([\underbrace{\operatorname{max}(X_{1,\dots,\chi_{k}})}_{\forall n} \geq \mathbb{E}\left[[X_{n}=0\right]\right] + \mathbb{E}\left[[\underbrace{\operatorname{max}(X_{1,\dots,\chi_{k}})}_{\forall n} \geq \mathbb{E}\left[[X_{n}=0\right]\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right]\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right]\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right]\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right]\right] + \mathbb{E}\left[[X_{n}=0\right]\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right]\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right]\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right]\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right]\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right]\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right] + \mathbb{E}\left[[X_{n}=0\right]\right] + \mathbb{E}\left[[X_{n}=0$