Exercise 4 for April 11

Exercise. Let $\left(X_{i}\right)_{i \geq 1}$ be i.i.d. random variables. Assume that X_{1} is integer-valued non-constant, aperiodic, with $\mathbb{E}\left[X_{1}^{2}\right]<$ ∞ and $\mathbb{E}\left[X_{1}\right]=0$ Set $S_{n}=X_{1}+\cdots+X_{n}$.
(1) Show that $\frac{\max \left(X_{1}, \ldots, X_{n}\right)}{\sqrt{n}}$ converges to 0 in probability.
(2) Show that the same result holds under the conditional probability $\mathbb{P}\left(\cdot \mid S_{n}=0\right)$.

Hint. First show that $\frac{\max \left(X_{1}, \ldots, X_{\lfloor n / 2\rfloor}\right)}{\sqrt{n}}$ converges to 0 in probability under the conditional probability $\mathbb{P}\left(\cdot \mid S_{n}=0\right)$.

