Exercise 5 for April 18

Exercise. Let X be a real-valued random variable. Assume that for fixed $T>0, c>0, \beta>2$ we have

$$
\mathbb{P}(X \in[u, u+T)) \quad \underset{u \rightarrow \infty}{\sim} \frac{c}{u^{1+\beta}}
$$

Show that

$$
\mathbb{P}(X \geq u) \underset{u \rightarrow \infty}{\sim} \quad \frac{c}{\beta T} \frac{1}{u^{\beta}}
$$

$$
\begin{aligned}
& \text { Write } P\left(X_{1} \geqslant u\right)=\sum_{n=0}^{\infty} P\left(X_{1} \in[u+n T, u+(n+1) T)\right) \sum_{u \rightarrow \infty}^{\infty} \sum_{n=0}^{\infty} \frac{c}{(u+n T)^{1+\beta}} \\
& \text { Then } \sum_{n=0}^{\infty} \frac{c}{(u+n T)^{\beta}}=\int_{0}^{\infty} \frac{c}{(u+(x) T)^{1+\beta}} d x \\
&=\int_{0}^{\infty} \frac{c}{(u+(x u) T)^{1+\beta}} u d x=\frac{1}{u^{\beta}} \int_{0}^{\infty} \frac{c}{\left(1+\frac{L x u s}{u} T\right)^{1+\beta}} d x .
\end{aligned}
$$

By dominated convergence, we readily get $\int_{0}^{\infty} \frac{C}{\left(1+\frac{\left.\alpha x_{\mu}\right)}{\mu} T\right)^{1+\beta}} d x \underset{\mu \rightarrow \infty}{\longrightarrow} \int_{0}^{\infty} \frac{C}{(1+x T)^{1+\beta}} d x=\frac{C}{\beta T}$.

