Exercise. This exercise is made of two independent questions.

- (1) In the proof of the Theorem of Lecture 5, can one replace $\ln(m)^3$ by $\ln(m)$ (and by adding some constants when needed)?

1) No, because of the skep showing that

$$Q_1^{N} = \mathbb{B}[S_{n6} \otimes_{M}, X_n in max. X_e \leq \overline{m}, S_{n-1} > \frac{m}{ent(m)}] = o(\frac{n}{m^{1+\beta}})$$

I wheel, by the maximal inequality $Q_1^{Nn} \leq \mathbb{B}[S_{n-1} > \frac{m}{ent(m)}]$ inver $X_e < \overline{m}$) $\leq K \exp(-\frac{m}{ent(m)})$,
so if we take $\overline{m} = \frac{m}{L \ln(m)}$ with Loo being some constant, we get
 $Q_1^{N, N} \leq K \exp(-L)$ which is not enough to get $o(\frac{n}{m^{1+\beta}})$.
2) Jes! Stue (Ha) for $T < \infty$ implies (Ha) for $T = \infty$, it is enough to show the result when $\mathbb{B}(Ki)^{n} = \frac{m^2}{u^{\beta}}$
for $g_{S>2}$. To see it write for uso
 $\mathbb{B}(X_1 + X_2 \ge M) = \mathbb{B}(X_1 + X_2 \ge M, X_1 \le M(2) + \mathbb{B}(X_1 + X_2 \ge M, X_2 \le M(2) + \mathbb{B}(X_1 \ge \frac{M}{2}, X_2 \ge \frac{M}{2})$
 $= 2 \mathbb{B}(X_1 + X_2 \ge M, X_1 \le M(2) + \mathbb{B}(X_2 \ge \frac{M}{2})^2$
by $\mathbb{B}[X_1 \ge \frac{M}{2}]^2 = o(\mathbb{B}(X_1 \ge M))$, so it is enough to show
 $\mathbb{B}(X_1 + X_2 \ge M, X_1 \le M)$ is of $X_1 \ge M$.

To see this, write
$$\frac{B(X_1 + X_2)M_1 X_1 \leq \frac{4k}{2})}{B(X_1 \geq M_1)} = \int_{\infty}^{\infty} \frac{B(X \geq u-x)}{B(X \geq u)} I_{X \leq \frac{4k}{2}} B_X(dx)$$
where X has how X_1. We apply dominated convergence:
• for $x \in B$, $\frac{B(X \geq u-x)}{B(X \geq u)} I_{X \leq \frac{4k}{2}} = \frac{1}{u \rightarrow \infty} I$
• $\frac{B(X \geq u-x)}{B(X \geq u)} I_{X \leq \frac{4k}{2}} \leq \frac{B(X \geq \frac{4k}{2})}{B(X \geq u)} \leq C$ by (b), which is $B_X(dx)$ integrable.
This completes the proof