Exercise 6 for April 25

Exercise. This exercise is made of two independent questions.
(1) In the proof of the Theorem of Lecture 5 , can one replace $\ln (m)^{3}$ by $\ln (m)$ (and by adding some constants when needed)?
(2) Assume that X satisfies assumption $\left(H_{\Delta}\right)$ (with $T<\infty$ or $T=\infty$). Let X_{1}, X_{2} be independent with same law as X. Is it true that

$$
\mathbb{P}\left(X_{1}+X_{2} \geq u\right) \quad \underset{u \rightarrow \infty}{\sim} 2 \mathbb{P}\left(X_{1} \geq u\right) ?
$$

1) No, beccuese of the step showing that

$$
Q_{1}^{m, n}=\mathbb{B}\left(S_{n \in \Delta_{m}}, X_{n} \geqslant \bar{m}, \max _{1<k \leqslant n-1} X_{k}<\frac{\delta}{m}, \quad S_{n-1}>\frac{m}{\ln (m)}\right)=0\left(\frac{n}{m^{1+\beta}}\right)
$$

Indeed, by the maximal inequality $g, Q_{1}^{m, n} \leq \mathbb{S}\left(S_{n-i}\right\rangle \frac{m}{\operatorname{en}(m)}, \max _{1 \leq k \leq n-1} x_{k}\langle\bar{m}) \leq K \exp \left(-\frac{m}{\operatorname{en}(m) \bar{m}}\right)$, so if we table $\bar{m}=\frac{m}{L \ln (m)}$ with $L>0$ being some constant, we get $Q_{1}^{m_{1} n} \leqslant K \exp (-L)$ which is not enough to get $0\left(\frac{n}{m^{1+\beta}}\right)$.
2) Yes! Sauce $\left(H_{\Delta}\right)$ for $T<\infty$ implies $\left(H_{\Delta}\right)$ for $T=\infty$, t is enough to show the result when $\mathbb{B}\left(x_{1} \geqslant \mu\right) \sim^{(*)} \frac{C}{u^{\beta}}$ for $\beta>2$. To see it write for $\mu>0$

$$
\begin{aligned}
\mathbb{B}\left(X_{1}+X_{2} \geqslant \mu\right) & =\mathbb{P}\left(X_{1}+X_{2} \geqslant \mu, X_{1} \leqslant \mu / 2\right)+\mathbb{P}\left(X_{1}+X_{2} \geqslant \mu, X_{2} \leqslant \mu / 2\right)+\mathbb{B}\left(X_{1} \geqslant \frac{\mu}{2}, X_{2} \geqslant \frac{\mu}{2}\right) \\
& =2 \mathbb{B}\left(X_{1}+x_{2} \geqslant \mu, x_{1} \leqslant \mu / 2\right)+\mathbb{B}\left(X_{2} \geqslant \frac{\mu}{2}\right)^{2}
\end{aligned}
$$

By (y) $B\left(x_{1} \geqslant \frac{u}{2}\right)^{2}=0\left(\mathbb{P}\left(x_{1} \geqslant u\right)\right)$, so it is enough to show

$$
P\left(x_{1}+x_{2} \geqslant u, x_{1} \leqslant \frac{\mu}{2}\right) \underset{u \rightarrow \infty}{\sim} B\left(x_{1} \geqslant u\right)
$$

To see this, write $\frac{B\left(X_{1}+x_{2} \geqslant \mu, x_{1} \leqslant \frac{\mu}{2}\right)}{B\left(x_{1} \geqslant \mu\right)}=\int_{-\infty}^{\infty} \frac{\mathbb{P}(x \geqslant u-x)}{\mathbb{P}(x \geqslant u)} \mathbb{1}_{x \leqslant \frac{\mu}{2}} P_{x}(d x)$
where x has haw x_{1}. We apply domineered convergence:

- For $x \in \mathbb{B}, \frac{\mathbb{B}(X \geqslant u-x)}{\mathbb{B}(X \geqslant u)} \mathbb{I}_{x \leq \frac{\mu}{2}} \xrightarrow[u \rightarrow \infty]{ } 2$
- $\frac{B(x \geqslant u-x)}{B(x \geqslant u)} \mathbb{1}_{x \leqslant \frac{\mu}{2}} \leqslant \frac{B(x \geqslant \mu / 2)}{P(x \geqslant \mu)} \leqslant C$ by (\forall), which is $\mathbb{P}_{x}(d x)$ integrable.

This completes the proof

