Exercise. Let $\left(X_{i}\right)_{i \geq 1}$ be a sequence i.i.d. random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\mathbb{P}\left(X_{1} \geq u\right) \sim c / u^{\beta}$ as $u \rightarrow \infty$ with $\beta>2$.
Set $S_{n}=X_{1}+\cdots+X_{n}$. Let $\left(x_{n}\right)_{n \geq 1}$ be a sequence such that $\liminf _{n \rightarrow \infty} x_{n} / n>0$.
Obtain a limit theorem for $\max \left(X_{1}, \ldots, X_{n}\right)$ under $\mathbb{P}\left(\cdot \mid S_{n} \geq x_{n}\right)$ as $n \rightarrow \infty$.

Set $M_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$. Intuition: By the ore big-jemp principle ne should have $\mathbb{P}\left(M_{n}>\mu x_{n}\right) \cong n \mathbb{P}\left(X_{1}>\mu x_{n}\right)$ for n la ge. In addition $\mathbb{P}\left(S_{n}>u x_{n}\right) \sim n \mathbb{B}\left(X_{1}>\mu x_{n}\right)$ Thus re expect, for uss, $\frac{\left.P\left(M_{n}\right) \mu x_{n}\right)}{\left.P\left(S_{n}\right) x_{n}\right)} \rightarrow \frac{1}{n \rightarrow \infty} \frac{1}{\mu^{p}}$

We show that $\frac{M_{n}}{x_{n}}$ converges indistribetion to J with deverity. $\frac{\beta}{u^{p+1}} \perp_{1 \geq 1}$ du
As in the lecture, write $M_{n}=s_{n}-\hat{x}_{1}+\ldots+\hat{x}_{n-1}$
By Shutsky's levine, A is enough to show that under $\mathbb{B}\left(\cdot\left|S_{n}\right\rangle x_{n}\right)$:
(a) $\frac{S_{n}}{x_{n}} \xrightarrow{(d)} J$
(b) $\frac{\hat{x}_{1}+\cdots+\hat{x}_{n-1}}{x_{n}} \xrightarrow{\mathbb{P}} 0$

For (a), this follows by writing $\frac{\mathbb{B}\left(S_{n}>\mu x_{n}\right)}{B\left(S_{n}>x_{n}\right)} \sim \frac{n \mathbb{B}\left(x_{1}>\mu x_{n}\right)}{n \mathbb{P}\left(x_{1}>x_{n}\right)} \underset{n \rightarrow 0}{\longrightarrow} \frac{1}{\mu^{\beta}}$ for $u>1$.
For (b), this follows from the fad that render $B C \cdot\left(S_{n}>x_{n}, \hat{X}_{1}, \ldots, X_{m 1}\right.$ are arguptbhicaly ind with law x_{1}, and $\underbrace{\frac{x_{1}+\cdots+x_{n-1}}{n}}_{\rightarrow \rightarrow 0} \cdot \frac{n}{x_{n}} \operatorname{limmp}_{p} \rightarrow \infty$

