Exercise. Fix $p \in[1 / 2,1]$. Set $\mu(k)=p(1-p)^{k}$ for $k \geq 0$. Let \mathcal{T}_{n} be a B_{μ} random tree conditioned on having n vertices. Show that \mathcal{T}_{n} follows the uniform distribution on the set of all plane trees with n vertices.

It is enough to shat if T_{1}, T_{2} are plane trees with n vertices, then $\mathbb{P}\left(T=T_{1}\right)=\mathbb{(\delta)} \mathbb{S}\left(\Gamma=T_{2}\right)$ with T a B_{μ}-tree. Indeed, we then have $\mathbb{P}\left(T_{n}=T_{1}\right)=\frac{\mathbb{P}\left(T=T_{1}\right)}{\mathbb{P}(\mathbb{T} \mid=n)}=\frac{\mathbb{P}\left(T=T_{2}\right)}{\mathbb{P}\left(\Psi_{1=n)}\right)}=\mathbb{B}\left(T_{n}=T_{2}\right)$,
which shows that τ_{n} is mifarm on the set of plane trees with n verities
To show (x) the bey obscuration is that if T has n vatien, $\sum_{n \in T} k_{n}(T)=n-1$. Then: $B\left(\tau=T_{1}\right)=\prod_{\mu \in T_{1}} p(1-p)^{p_{k}(T)}=p^{n}(1-p)^{n-1}$ which only depends on n.
Then $\mathbb{P}\left(Y^{\mu \in T_{1}}\right)=\mathbb{P}\left(\mathbb{T}=T_{2}\right)$.

