Exercise 9 for May 23th

Exercise. Let μ be a subcritical offspring distribution (that is $\sum_{k=0}^{\infty} k\mu(k) < 1$) such that $G_{\mu}(x) = \sum_{k=0}^{\infty} \mu(k)x^k$ has ar infinite radius of convergence. Show that there exists b > 0 such that $\hat{\mu}$ defined by

$$\hat{\mu}(k) = \frac{b^k \mu(k)}{G_\mu(b)}$$

is critical (that is $\sum_{k=0}^{\infty} k\mu(k) = 1$).

This amount to showing that 3600 s.t
$$bF_{\mu}(b) = 1 < 5 bF_{\mu}(b) = F_{\mu}(b)$$

Set $F(x) = xF_{\mu}(x) - F_{\mu}(x)$
 $= \sum_{k=0}^{\infty} k\mu(k)x^{k} - \sum_{k=0}^{\infty} \mu(k)x^{k}$
Observe that $F(o) = -\mu(o) < 0$, that F is continuous and that $lcon F = +\infty$
Indeed, let kost be an integer with $\mu(k_{0}) > 0$ (which exists nine μ is subwitced and
is a probability measure). Then
 $F(x) = \frac{\mu(k_{0})x^{k} - \mu(o)}{x - \mu(o)} + \sum_{k=1}^{\infty} (k-1)\mu(k)x^{k} + \frac{(k_{0}-2)\mu(k_{0})x}{70}$
The result follows.