Exercise. Let μ be a subcritical offspring distribution (that is $\left.\sum_{k=0}^{\infty} k \mu(k)<1\right)$ such that $G_{\mu}(x)=\sum_{k=0}^{\infty} \mu(k) x^{k}$ has ar infinite radius of convergence. Show that there exists $b>0$ such that $\hat{\mu}$ defined by

$$
\hat{\mu}(k)=\frac{b^{k} \mu(k)}{G_{\mu}(b)}
$$

is critical (that is $\sum_{k=0}^{\infty} k \mu(k)=1$).

This amounts to showing that $\exists b>0$ s.t $\frac{b \sigma_{\mu}^{\prime}(b)}{\sigma_{\mu}(b)}=1 \Leftrightarrow b \sigma_{\mu}^{\prime}(b)=\sigma_{\mu}(b)$
Set $F(x)=x \sigma_{\mu}^{\prime}(x)-\sigma_{\mu}(x)$ Set $F(x)=x G_{\mu}^{\prime}(x)-G_{\mu}(x)$

$$
=\sum_{k=0}^{\infty} k \mu(k) x^{k}-\sum_{k=0}^{\infty} \mu(k) x^{k}
$$

$0 b \operatorname{ser} v e$ that $F(0)=-\mu(0)<0$, that F is continuous and that $\lim _{\text {rm }} F=+\infty$
Indeed, let $k_{0}>1$ be an integer with $\mu\left(k_{0}\right)>0$ (which exists since μ is saburitial and is a probability measure). Then

$$
F(x)=\underbrace{\mu\left(k_{0}\right) x^{k_{0}}-\mu(0)}_{x \longrightarrow \infty}+\underbrace{\sum_{0}^{\infty}(k-1) \mu(k) x^{k}}_{\substack{k=1 \\ k \neq k_{0}}}+\underbrace{\left(k_{0}-2\right) \mu\left(k_{0}\right) x_{0}}_{0}
$$

The result follows.

