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Context

Understand the geometry and the structure of large random trees by studying

their scaling limits.
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Motivation for studying limits

Let (Xn)n>1 be “discrete” objects converging towards a “limiting” object X:

Xn �!
n!1

X.

Several consequences:

- From the discrete to the continuous world: if a property P is satisfied by all

the Xn and passes to the limit, then X satisfies P.

- From the continuous world to the discrete world: if a property P is satisfied

by X and passes to the limit, Xn satisfies “approximately” P for n large.

- Universality: if (Yn)n>1 is another sequence of objects converging towards

X, then Xn and Yn share approximately the same properties for n large.
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Motivation for studying limits

Let (Xn)n>1 be “discrete” objects converging towards a “continuous” object X:

Xn �!
n!1

X.

y In what space do the objects live?

Here, a metric space (Z,d)y What is the sense of the convergence when the objects are random? Here,

convergence in distribution:

E [F(Xn)] �!
n!1

E [F(X)]

for every continous bounded function F : Z ! R.

Xn

(d)�!
n!1

X implies G(Xn)
(d)�!

n!1
G(X)

for every continuous function G : Z ! R.
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Outline

I. Models coded by trees

II. Local limits of Bienaymé trees

III. Scaling limits of Bienaymé trees
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Stack triangulations (Albenque, Marckert)
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Dissections (Curien, K.)
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Maps (Schaeffer)
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Maps (Addario-Berry)
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Maps with percolation (Curien, K.)
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Parking functions (Chassaing, Louchard)
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I. Models coded by trees

II. Local limits of Bienaymé trees
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Recall that in a Bienaymé tree, every individual has a random number of children

(independently of each other) distributed according to µ (offspring distribution).

What does a large size-conditioned Bienaymé tree look like, near the root?
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Local limits
We will consider two regimes:

y µ critical (
P

i
iµ(i) = 1).

y µ subcritical (
P

i
iµ(i) < 1)

and ⇢µ = 1, with ⇢µ equal to the radius of

convergence of Gµ(z) =
P

µ(i)zi.

These regimes actually cover all the cases. Indeed, if c < ⇢µ, two BGW

trees with offspring distributions µ and µc, defined by

µc(k) =
1

Gµ(c)
ckµ(k), k > 0,

when conditioned on having n vertices, have the same distribution (Kennedy

’75).
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Local limits: critical case
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Local limits: critical case
Let µ be a critical offspring distribution. Let Tn be a Bienaymé tree

conditioned on having n vertices.

Theorem (Kesten ’87, Janson ’12, Abraham & Delmas ’14)
The convergence

Tn

(d)�!
n!1

T1

holds in distribution for the local topology, where T1 is the infinite Bienaymé

tree conditioned to survive.

y Are the following functionals continuous with respect to the local topology:

– degree of the root?

Yes!

– the maximal degree of the tree?
�

No!

– length of the left-most path starting from the root? Yes!
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BGW BGW

BGW

BGW

BGW

BGW

BGW

BGW
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1
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Local limits: subcritical case
Let µ be a subcritical offspring distribution and assume that the radius of

convergence of
P

i>0 µiz
i

is 1.

Theorem (Jonsson & Stefánsson ’11, Janson ’12, Abraham &
Delmas ’14)
The convergence

Tn

(d)�!
n!1

T⇤
1

holds in distribution for the local topology, where T⇤
1 is a “condensation” tree
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What does a large Bienaymé tree look like, globally?
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I have simulated and drawn a uniform plane tree with 10000 vertices. What did I get?

Figure: Result 1.

Figure: Result 2.

Figure: Result 3. Figure: Result 4.

y wooclap.com ; code randomtree.
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We will also consider the two regimes:

y µ critical.

y µ subcritical.

�
To have scaling limits, we will need additional regularity assumptions.

We shall code plane trees by functions.
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Coding trees by functions
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Contour function of a tree
Define the contour function of a tree:
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Coding trees by contour functions

Knowing the contour function, it is easy to recover the tree.
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Scaling limits
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Scaling limits: finite variance
Let µ be an offspring distribution with finite positive variance such thatP

i>0 iµ(i) = 1. Let Tn be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous ’93)
Let �2

be the variance of µ. Let t 7! Ct(Tn) be the contour function of Tn.

Then: ✓
1p
n
C2nt(Tn)

◆

06t61

(d)�!
n!1

✓
2

�
· (t)

◆

06t61

,

where the convergence holds in distribution in C([0, 1],R), where is the

normalized Brownian excursion.

Idea of the proof:

y The Lukasiewicz path of Tn, appropriately scaled, converges in distribution

to (conditioned Donsker’s invariance principle).

y Go from the Lukasieiwicz path of Tn to its contour function.

Igor Kortchemski Limits of large random trees 27 / 672



Models coded by trees Local limits of Bienaymé trees Scaling limits of Bienaymé trees

Scaling limits: finite variance
Let µ be an offspring distribution with finite positive variance such thatP

i>0 iµ(i) = 1. Let Tn be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous ’93)
Let �2

be the variance of µ. Let t 7! Ct(Tn) be the contour function of Tn.

Then: ✓
1p
n
C2nt(Tn)

◆

06t61

(d)�!
n!1

✓
2

�
· (t)

◆

06t61

,

where the convergence holds in distribution in C([0, 1],R)

, where is the

normalized Brownian excursion.

Idea of the proof:

y The Lukasiewicz path of Tn, appropriately scaled, converges in distribution

to (conditioned Donsker’s invariance principle).

y Go from the Lukasieiwicz path of Tn to its contour function.

Igor Kortchemski Limits of large random trees 27 / 672



Models coded by trees Local limits of Bienaymé trees Scaling limits of Bienaymé trees

Scaling limits: finite variance
Let µ be an offspring distribution with finite positive variance such thatP

i>0 iµ(i) = 1. Let Tn be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous ’93)
Let �2

be the variance of µ. Let t 7! Ct(Tn) be the contour function of Tn.

Then: ✓
1p
n
C2nt(Tn)

◆

06t61

(d)�!
n!1

✓
2

�
· (t)

◆

06t61

,

where the convergence holds in distribution in C([0, 1],R)

, where is the

normalized Brownian excursion.

Idea of the proof:

y The Lukasiewicz path of Tn, appropriately scaled, converges in distribution

to (conditioned Donsker’s invariance principle).

y Go from the Lukasieiwicz path of Tn to its contour function.

Igor Kortchemski Limits of large random trees 27 / 672



Models coded by trees Local limits of Bienaymé trees Scaling limits of Bienaymé trees

Scaling limits: finite variance
Let µ be an offspring distribution with finite positive variance such thatP

i>0 iµ(i) = 1. Let Tn be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous ’93)
Let �2

be the variance of µ. Let t 7! Ct(Tn) be the contour function of Tn.

Then: ✓
1p
n
C2nt(Tn)

◆

06t61

(d)�!
n!1

✓
2

�
· (t)

◆

06t61

,

where the convergence holds in distribution in C([0, 1],R), where is the

normalized Brownian excursion.

Idea of the proof:

y The Lukasiewicz path of Tn, appropriately scaled, converges in distribution

to (conditioned Donsker’s invariance principle).

y Go from the Lukasieiwicz path of Tn to its contour function.

Igor Kortchemski Limits of large random trees 27 / 672



Models coded by trees Local limits of Bienaymé trees Scaling limits of Bienaymé trees

Scaling limits: finite variance
Let µ be an offspring distribution with finite positive variance such thatP

i>0 iµ(i) = 1. Let Tn be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous ’93)
Let �2

be the variance of µ. Let t 7! Ct(Tn) be the contour function of Tn.

Then: ✓
1p
n
C2nt(Tn)

◆

06t61

(d)�!
n!1

✓
2

�
· (t)

◆

06t61

,

where the convergence holds in distribution in C([0, 1],R), where is the

normalized Brownian excursion.

Idea of the proof:

y The Lukasiewicz path of Tn, appropriately scaled, converges in distribution

to (conditioned Donsker’s invariance principle).

y Go from the Lukasieiwicz path of Tn to its contour function.

Igor Kortchemski Limits of large random trees 27 / 672



Models coded by trees Local limits of Bienaymé trees Scaling limits of Bienaymé trees

Scaling limits: finite variance
Let µ be an offspring distribution with finite positive variance such thatP

i>0 iµ(i) = 1. Let Tn be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous ’93)
Let �2

be the variance of µ. Let t 7! Ct(Tn) be the contour function of Tn.

Then: ✓
1p
n
C2nt(Tn)

◆

06t61

(d)�!
n!1

✓
2

�
· (t)

◆

06t61

,

where the convergence holds in distribution in C([0, 1],R), where is the
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y Consequence: for every a > 0,

P
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p
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P (sup > a)

Idea of the proof:

y The Lukasiewicz path of Tn, appropriately scaled, converges in distribution
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Do the discrete trees converge to a continuous tree?

Yes, if we view trees as compact metric spaces by equiping the vertices with the

graph distance!
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The Hausdorff distance

Let X, Y be two subsets of the same metric space Z.

Let

Xr = {z 2 Z;d(z,X) 6 r}, Yr = {z 2 Z;d(z, Y) 6 r}

be the r-neighborhoods of X and Y. Set

dH(X, Y) = inf {r > 0;X ⇢ Yr and Y ⇢ Xr} .
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The Gromov–Hausdorff distance

Let X, Y be two compact metric spaces.

The Gromov–Hausdorff distance between X and Y is the smallest Hausdorff

distance between all possible isometric embeddings of X and Y in a same metric

space Z.
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The Brownian tree
y Consequence of Aldous’ theorem (Duquesne, Le Gall): there exists a

compact metric space such that the convergence

�

2
p
n

· Tn

(d)�!
n!1

T ,

holds in distribution in the space of compact metric spaces equiped with the

Gromov–Hausdorff distance.

Notation: for a metric space (Z,d) and a > 0, a · Z is the metric space

(Z,a · d).

The metric space T is called the Brownian continuum random tree (CRT), and

is coded by a Brownian excursion.
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An approximation of a realization of a Brownian CRT
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Scaling limits: infinite variance

When µ is critical and has infinite variance, scaling limits (for the

Gromov–Hausdorff topology) exist under the assumption that µ is in the domain

of attraction of a stable law.

y This essentially means that µ(n) ' c/n�
(heavy tail behavior).

y Scaling limits are described use stable Lévy processes.
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What about non-critical offspring distributions?

y Why did Aldous consider only critical offspring distributions?
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Condensation (subcritical case)
Let µ be a subcritical offspring distribution such that µ(n) ⇠ c/n1+�

with

� > 2. Let Tn be a µ-Bienaymé tree conditioned on having n vertices.
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Condensation (subcritical case)
Let µ be a subcritical offspring distribution such that µ(n) ⇠ c/n1+�

with

� > 2. Let Tn be a µ-Bienaymé tree conditioned on having n vertices.

Theorem (Jonsson & Stefánsson ’11)
Let m be the mean of µ. Denote by �(Tn) the maximum degree of Tn. Then

�(Tn)

n

(P)�!
n!1

1-m.
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y What is the order of magnitude of the second largest degree �2(Tn)?
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Theorem (Jonsson & Stefánsson ’11)
Let m be the mean of µ. Denote by �(Tn) the maximum degree of Tn. Then

�(Tn)

n

(P)�!
n!1

1-m.

y What is the order of magnitude of the second largest degree �2(Tn)?

Theorem (K. ’15)
For every u > 0,

P
✓
�2(Tn)

n1/�
6 u

◆
�!
n!1

exp

✓
-
c

�
· 1

u�

◆

Igor Kortchemski Limits of large random trees 35 / 672



Models coded by trees Local limits of Bienaymé trees Scaling limits of Bienaymé trees

Condensation (subcritical case)
Let µ be a subcritical offspring distribution such that µ(n) ⇠ c/n1+�

with

� > 2. Let Tn be a µ-Bienaymé tree conditioned on having n vertices.

Theorem (Jonsson & Stefánsson ’11)
Let m be the mean of µ. Denote by �(Tn) the maximum degree of Tn. Then

�(Tn)

n

(P)�!
n!1

1-m.

Theorem (K. ’15)
For every u > 0,

P
✓
�2(Tn)

n1/�
6 u

◆
�!
n!1

exp

✓
-
c

�
· 1

u�

◆

�
This is not true for any subcritical offspring distribution whose generating

function has radius of convergence equal to 1 (even though there always is a

local limit with a finite spine)!
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Condensation (subcritical case)
Let µ be a subcritical offspring distribution such that µ(n) ⇠ c/n1+�

with

� > 2. Let Tn be a µ-Bienaymé tree conditioned on having n vertices.

y What is the height of Tn?
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Condensation (subcritical case)
Let µ be a subcritical offspring distribution such that µ(n) ⇠ c/n1+�

with

� > 2. Let Tn be a µ-Bienaymé tree conditioned on having n vertices.

y What is the height of Tn?

Theorem (K. ’15)
We have

Height(Tn)

ln(n)

(P)�!
n!1

ln(1/m).
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Let µ be a subcritical offspring distribution such that µ(n) ⇠ c/n1+�
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� > 2. Let Tn be a µ-Bienaymé tree conditioned on having n vertices.

y Are there scaling limits?

y No, not for the Gromov–Hausdorff topology: the tree is too “bushy”.
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