

Limits of large random trees

Condensation Phenomena in Random Trees – Spring 2024

Understand the geometry and the structure of large random trees by studying their scaling limits.

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "limiting" object X:

$$X_n \xrightarrow[n \to \infty]{} X_n$$

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "limiting" object X:

$$X_n \xrightarrow[n \to \infty]{} X_n$$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "limiting" object X:

$$X_n \xrightarrow[n \to \infty]{} X$$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .
- From the continuous world to the discrete world: if a property \mathcal{P} is satisfied by X and passes to the limit, X_n satisfies "approximately" \mathcal{P} for n large.

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "limiting" object X:

$$X_n \xrightarrow[n \to \infty]{} X$$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .
- From the continuous world to the discrete world: if a property \mathcal{P} is satisfied by X and passes to the limit, X_n satisfies "approximately" \mathcal{P} for n large.
- Universality: if $(Y_n)_{n \ge 1}$ is another sequence of objects converging towards X, then X_n and Y_n share approximately the same properties for n large.

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X$$

 $\wedge \rightarrow$ In what space do the objects live?

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

 $X_n \xrightarrow[n \to \infty]{} X.$

 \rightarrow In what space do the objects live? Here, a metric space (Z, d)

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X_n$$

 \bigwedge In what space do the objects live? Here, a metric space (Z, d)

 $\wedge \rightarrow$ What is the sense of the convergence when the objects are random?

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X_n$$

- $\wedge \rightarrow$ In what space do the objects live? Here, a metric space (Z, d)
- √→ What is the sense of the convergence when the objects are random? Here, convergence in distribution:

$$\mathbb{E}\left[F(\mathbf{X}_{n})\right] \xrightarrow[n \to \infty]{} \mathbb{E}\left[F(\mathbf{X})\right]$$

for every continous bounded function $F: Z \to \mathbb{R}$.

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X$$

- $\land \rightarrow$ In what space do the objects live? Here, a metric space (Z, d)
- √→ What is the sense of the convergence when the objects are random? Here, convergence in distribution:

$$\mathbb{E}\left[F(\mathbf{X}_{n})\right] \xrightarrow[n \to \infty]{} \mathbb{E}\left[F(\mathbf{X})\right]$$

for every continous bounded function $F:Z\to \mathbb{R}.$

II. LOCAL LIMITS OF BIENAYMÉ TREES

II. LOCAL LIMITS OF BIENAYMÉ TREES

III. SCALING LIMITS OF BIENAYMÉ TREES

II. LOCAL LIMITS OF BIENAYMÉ TREES

III. Scaling limits of Bienaymé trees

Stack triangulations (Albenque, Marckert)

Figure 8: Construction of the ternary tree associated with an history of a stack-triangulation

Dissections (Curien, K.)

Fig. 4. The dual tree of a dissection of P_8 , note that the tree has 7 leaves.

FIGURE 6. Illustration of the Cori-Vauquelin-Schaeffer bijection, in the case $\epsilon = 1$. For instance, e_3 is the successor of e_0 , e_2 the successor of e_1 , and so on.

Maps (Addario-Berry)

(c) The decomposition of M into blocks. Blocks are joined by grey lines according to the tree structure. Root edges of blocks are shown with arrows.

(D) The correspondence between blocks and nodes of T_M . Non-trivial blocks receive the alphabetical label (from A through L) of the corresponding node.

Maps with percolation (Curien, K.)

Parking functions (Chassaing, Louchard)

II. LOCAL LIMITS OF BIENAYMÉ TREES

III. Scaling limits of Bienaymé trees

Recall that in a Bienaymé tree, every individual has a random number of children (independently of each other) distributed according to μ (offspring distribution).

Recall that in a Bienaymé tree, every individual has a random number of children (independently of each other) distributed according to μ (offspring distribution).

What does a large size-conditioned Bienaymé tree look like, near the root?

We will consider two regimes:

We will consider two regimes:

```
\wedge \mu critical (\sum_{i} i\mu(i) = 1).
```


We will consider two regimes:

- $\wedge \mu$ critical $(\sum_{i} i\mu(i) = 1)$.
- $\rightarrow \mu$ subcritical $(\sum_{i} i\mu(i) < 1)$

We will consider two regimes:

 $\wedge \mu$ critical $(\sum_{i} i\mu(i) = 1)$.

 $\wedge \rightarrow \mu$ subcritical $(\sum_{i} i\mu(i) < 1)$ and $\rho_{\mu} = 1$, with ρ_{μ} equal to the radius of convergence of $G_{\mu}(z) = \sum \mu(i)z^{i}$.

We will consider two regimes:

```
\wedge \mu critical (\sum_{i} i\mu(i) = 1).
```

 $\wedge \rightarrow \mu$ subcritical $(\sum_{i} i\mu(i) < 1)$ and $\rho_{\mu} = 1$, with ρ_{μ} equal to the radius of convergence of $G_{\mu}(z) = \sum \mu(i)z^{i}$.

-`Q

These regimes actually cover all the cases.

We will consider two regimes:

 $\wedge \mu$ critical $(\sum_{i} i\mu(i) = 1)$.

 $\longrightarrow \mu$ subcritical $(\sum_{i} i\mu(i) < 1)$ and $\rho_{\mu} = 1$, with ρ_{μ} equal to the radius of convergence of $G_{\mu}(z) = \sum \mu(i)z^{i}$.

These regimes actually cover all the cases. Indeed, if $c < \rho_{\mu}$, two BGW trees with offspring distributions μ and μ_c , defined by

$$\mu_{\mathbf{c}}(\mathbf{k}) = \frac{1}{G_{\mu}(\mathbf{c})} \mathbf{c}^{\mathbf{k}} \mu(\mathbf{k}), \qquad \mathbf{k} \ge \mathbf{0},$$

when conditioned on having n vertices, have the same distribution (Kennedy '75).

Let μ be a **critical** offspring distribution. Let \mathfrak{T}_n be a Bienaymé tree conditioned on having \mathfrak{n} vertices.

Let μ be a **critical** offspring distribution. Let \mathfrak{T}_n be a Bienaymé tree conditioned on having \mathfrak{n} vertices.

Theorem (Kesten '87, Janson '12, Abraham & Delmas '14) The convergence

$$\mathfrak{T}_{n} \quad \xrightarrow[n \to \infty]{(d)} \quad \mathfrak{T}_{\infty}$$

holds in distribution for the local topology, where \mathcal{T}_{∞} is the infinite Bienaymé tree conditioned to survive.

Let μ be a **critical** offspring distribution. Let \mathcal{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Kesten '87, Janson '12, Abraham & Delmas '14) The convergence

$$\mathcal{J}_n \quad \xrightarrow[n \to \infty]{(d)} \quad \mathcal{J}_\infty$$

holds in distribution for the local topology, where \mathcal{T}_{∞} is the infinite Bienaymé tree conditioned to survive.

 $\Lambda \to \text{This means that } [\mathfrak{T}_n]_k \to [\mathfrak{T}_\infty]_k$ in distribution, where $[\mathsf{T}]_k$ denotes the subtree of T obtained by keeping the first k children on the first k generations:

Let μ be a **critical** offspring distribution. Let \mathfrak{T}_n be a Bienaymé tree conditioned on having \mathfrak{n} vertices.

Theorem (Kesten '87, Janson '12, Abraham & Delmas '14) The convergence

$$\mathbf{J}_{\mathbf{n}} \quad \stackrel{(\mathbf{d})}{\underset{\mathbf{n}\to\infty}{\longrightarrow}} \quad \mathbf{T}_{\infty}$$

holds in distribution for the local topology, where \mathcal{T}_{∞} is the infinite Bienaymé tree conditioned to survive.

Let μ be a **critical** offspring distribution. Let \mathfrak{T}_n be a Bienaymé tree conditioned on having \mathfrak{n} vertices.

Theorem (Kesten '87, Janson '12, Abraham & Delmas '14) The convergence

$$\mathbf{J}_{\mathbf{n}} \quad \stackrel{(\mathbf{d})}{\underset{\mathbf{n}\to\infty}{\longrightarrow}} \quad \mathbf{T}_{\infty}$$

holds in distribution for the local topology, where \mathcal{T}_{∞} is the infinite Bienaymé tree conditioned to survive.

 \wedge Are the following functionals continuous with respect to the local topology:

- degree of the root?

Let μ be a **critical** offspring distribution. Let \mathfrak{T}_n be a Bienaymé tree conditioned on having \mathfrak{n} vertices.

Theorem (Kesten '87, Janson '12, Abraham & Delmas '14) The convergence

$$\mathbf{J}_{\mathbf{n}} \quad \stackrel{(\mathbf{d})}{\underset{\mathbf{n}\to\infty}{\longrightarrow}} \quad \mathbf{T}_{\infty}$$

holds in distribution for the local topology, where \mathcal{T}_{∞} is the infinite Bienaymé tree conditioned to survive.

 $\wedge \rightarrow$ Are the following functionals continuous with respect to the local topology:

- degree of the root? Yes!

Let μ be a **critical** offspring distribution. Let \mathfrak{T}_n be a Bienaymé tree conditioned on having \mathfrak{n} vertices.

Theorem (Kesten '87, Janson '12, Abraham & Delmas '14) The convergence

$$\mathbf{J}_{\mathbf{n}} \quad \stackrel{(\mathbf{d})}{\underset{\mathbf{n}\to\infty}{\longrightarrow}} \quad \mathbf{T}_{\infty}$$

holds in distribution for the local topology, where \mathcal{T}_{∞} is the infinite Bienaymé tree conditioned to survive.

- degree of the root? Yes!
- the maximal degree of the tree?

Let μ be a **critical** offspring distribution. Let \mathfrak{T}_n be a Bienaymé tree conditioned on having \mathfrak{n} vertices.

Theorem (Kesten '87, Janson '12, Abraham & Delmas '14) The convergence

$$\mathbf{J}_{\mathbf{n}} \quad \stackrel{(\mathbf{d})}{\underset{\mathbf{n}\to\infty}{\longrightarrow}} \quad \mathbf{T}_{\infty}$$

holds in distribution for the local topology, where \mathcal{T}_{∞} is the infinite Bienaymé tree conditioned to survive.

- degree of the root? Yes!
- the maximal degree of the tree? 😤 No!

Let μ be a **critical** offspring distribution. Let \mathfrak{T}_n be a Bienaymé tree conditioned on having \mathfrak{n} vertices.

Theorem (Kesten '87, Janson '12, Abraham & Delmas '14) The convergence

$$\mathbf{J}_{\mathbf{n}} \quad \stackrel{(\mathbf{d})}{\underset{\mathbf{n}\to\infty}{\longrightarrow}} \quad \mathbf{\mathcal{T}}_{\infty}$$

holds in distribution for the local topology, where \mathcal{T}_{∞} is the infinite Bienaymé tree conditioned to survive.

- degree of the root? Yes!
- the maximal degree of the tree? 😤 No!
- length of the left-most path starting from the root?

Let μ be a **critical** offspring distribution. Let \mathfrak{T}_n be a Bienaymé tree conditioned on having \mathfrak{n} vertices.

Theorem (Kesten '87, Janson '12, Abraham & Delmas '14) The convergence

$$\mathbf{J}_{\mathbf{n}} \quad \stackrel{(\mathbf{d})}{\underset{\mathbf{n}\to\infty}{\longrightarrow}} \quad \mathbf{T}_{\infty}$$

holds in distribution for the local topology, where \mathcal{T}_{∞} is the infinite Bienaymé tree conditioned to survive.

- degree of the root? Yes!
- the maximal degree of the tree? 😤 No!
- length of the left-most path starting from the root? Yes!

Let μ be a **subcritical** offspring distribution and assume that the radius of convergence of $\sum_{i \ge 0} \mu_i z^i$ is 1.

Let μ be a **subcritical** offspring distribution and assume that the radius of convergence of $\sum_{i \ge 0} \mu_i z^i$ is 1.

Theorem (Jonsson & Stefánsson '11, Janson '12, Abraham & Delmas '14)

The convergence

$$\mathfrak{T}_{n} \xrightarrow[n \to \infty]{(d)} \mathfrak{T}_{\infty}^{*}$$

holds in distribution for the local topology, where \mathcal{T}^*_{∞} is a "condensation" tree

Let μ be a **subcritical** offspring distribution and assume that the radius of convergence of $\sum_{i \ge 0} \mu_i z^i$ is 1.

Theorem (Jonsson & Stefánsson '11, Janson '12, Abraham & Delmas '14)

The convergence

$$\mathfrak{T}_{n} \quad \xrightarrow[n \to \infty]{(d)} \quad \mathfrak{T}_{\infty}^{*}$$

holds in distribution for the local topology, where \mathcal{T}^*_{∞} is a "condensation" tree

I. MODELS CODED BY TREES

II. LOCAL LIMITS OF BIENAYMÉ TREES

III. SCALING LIMITS OF BIENAYMÉ TREES

What does a large Bienaymé tree look like, globally?

Figure: Result 1.

Figure: Result 1.

Figure: Result 2.

Figure: Result 1.

Figure: Result 2.

Figure: Result 3.

Figure: Result 1.

Figure: Result 3.

Figure: Result 2.

Figure: Result 4.

Figure: Result 1.

Figure: Result 2.

Figure: Result 4.

Figure: Result 3.

wooclap.com | ; code **randomtree**.

 $\longrightarrow \mu$ critical.

 $\longrightarrow \mu$ critical.

 $\longrightarrow \mu$ subcritical.

 $\longrightarrow \mu$ critical.

 $\longrightarrow \mu$ subcritical.

To have scaling limits, we will need additional regularity assumptions.

 $\longrightarrow \mu$ critical.

 $\longrightarrow \mu$ subcritical.

To have scaling limits, we will need additional regularity assumptions.

-ݣ

We shall code plane trees by functions.

CODING TREES BY FUNCTIONS

Contour function of a tree

Define the contour function of a tree:

Coding trees by contour functions

Knowing the contour function, it is easy to recover the tree.

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i \ge 0} i\mu(i) = 1$. Let \mathcal{T}_n be a Bienaymé tree conditioned on having n vertices.

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i \ge 0} i\mu(i) = 1$. Let \mathfrak{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1} \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}}$$

where the convergence holds in distribution in $\mathcal{C}([0, 1], \mathbb{R})$

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i \ge 0} i\mu(i) = 1$. Let \mathfrak{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1}\quad \overset{(d)}{\underset{n\to\infty}{\longrightarrow}}\quad \left(\frac{2}{\sigma}\cdot\underline{e}(t)\right)_{0\leqslant t\leqslant 1},$$

where the convergence holds in distribution in $\mathcal{C}([0, 1], \mathbb{R})$

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i \ge 0} i\mu(i) = 1$. Let \mathfrak{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1} \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad \left(\frac{2}{\sigma}\cdot \mathfrak{e}(t)\right)_{0\leqslant t\leqslant 1},$$

where the convergence holds in distribution in $\mathcal{C}([0, 1], \mathbb{R})$, where \mathbf{e} is the normalized Brownian excursion.

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i \ge 0} i\mu(i) = 1$. Let \mathfrak{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1}\quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}}\quad \left(\frac{2}{\sigma}\cdot \mathbf{e}(t)\right)_{0\leqslant t\leqslant 1},$$

where the convergence holds in distribution in $\mathcal{C}([0, 1], \mathbb{R})$, where \mathbf{e} is the normalized Brownian excursion.

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i \ge 0} i\mu(i) = 1$. Let \mathfrak{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1} \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad \left(\frac{2}{\sigma}\cdot \mathfrak{e}(t)\right)_{0\leqslant t\leqslant 1},$$

where the convergence holds in distribution in $\mathcal{C}([0, 1], \mathbb{R})$, where \mathbf{e} is the normalized Brownian excursion.

 $\begin{array}{ll} & \checkmark & \text{Consequence: for every } a > 0, \\ & \mathbb{P}\left(\frac{\sigma}{2} \cdot \text{Height}(\mathfrak{T}_n) > a \cdot \sqrt{n}\right) & \xrightarrow[n \to \infty]{} \mathbb{P}\left(\sup e > a\right) \end{array}$

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i \ge 0} i\mu(i) = 1$. Let \mathfrak{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1} \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad \left(\frac{2}{\sigma}\cdot \mathfrak{e}(t)\right)_{0\leqslant t\leqslant 1},$$

where the convergence holds in distribution in $\mathcal{C}([0, 1], \mathbb{R})$, where \mathbf{e} is the normalized Brownian excursion.

$$\begin{array}{ll} & \bigwedge \quad \text{Consequence: for every } a > 0, \\ & \mathbb{P}\left(\frac{\sigma}{2} \cdot \text{Height}(\mathfrak{T}_{n}) > a \cdot \sqrt{n}\right) \qquad \underset{n \to \infty}{\longrightarrow} \quad \mathbb{P}\left(\sup \mathbf{e} > a\right) \\ & = & \sum_{k=1}^{\infty} (4k^{2}a^{2} - 1)e^{-2k^{2}a^{2}} \end{array}$$

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i \ge 0} i\mu(i) = 1$. Let \mathfrak{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1} \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad \left(\frac{2}{\sigma}\cdot \mathfrak{e}(t)\right)_{0\leqslant t\leqslant 1},$$

where the convergence holds in distribution in $\mathcal{C}([0, 1], \mathbb{R})$, where \mathbf{e} is the normalized Brownian excursion.

Idea of the proof:

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i \ge 0} i\mu(i) = 1$. Let \mathfrak{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1} \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad \left(\frac{2}{\sigma}\cdot \mathfrak{e}(t)\right)_{0\leqslant t\leqslant 1},$$

where the convergence holds in distribution in $\mathcal{C}([0, 1], \mathbb{R})$, where \mathbf{e} is the normalized Brownian excursion.

Idea of the proof:

 $\land \rightarrow$ The Lukasiewicz path of \Im_n , appropriately scaled, converges in distribution to e (conditioned Donsker's invariance principle).

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i \ge 0} i\mu(i) = 1$. Let \mathfrak{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1} \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad \left(\frac{2}{\sigma}\cdot \mathfrak{e}(t)\right)_{0\leqslant t\leqslant 1},$$

where the convergence holds in distribution in $\mathcal{C}([0, 1], \mathbb{R})$, where \mathbf{e} is the normalized Brownian excursion.

Idea of the proof:

- $\land \rightarrow$ The Lukasiewicz path of \Im_n , appropriately scaled, converges in distribution to e (conditioned Donsker's invariance principle).
- $\Lambda \rightarrow$ Go from the Lukasieiwicz path of \mathfrak{T}_n to its contour function.

DO THE DISCRETE TREES CONVERGE TO A CONTINUOUS TREE?

DO THE DISCRETE TREES CONVERGE TO A CONTINUOUS TREE?

Yes, if we view trees as compact metric spaces by equiping the vertices with the graph distance!

Let X, Y be two subsets of the same metric space Z.

The Hausdorff distance

Let X, Y be two subsets of the same metric space Z. Let

 $X_{\mathbf{r}} = \{ z \in \mathsf{Z}; d(z, \mathsf{X}) \leqslant \mathsf{r} \}, \qquad Y_{\mathbf{r}} = \{ z \in \mathsf{Z}; d(z, \mathsf{Y}) \leqslant \mathsf{r} \}$

be the r-neighborhoods of X and Y.

The Hausdorff distance

Let X, Y be two subsets of the same metric space Z. Let

 $\mathbf{X}_{\mathbf{r}} = \{ z \in \mathsf{Z}; \, \mathsf{d}(z, \mathsf{X}) \leqslant \mathsf{r} \}, \qquad \mathbf{Y}_{\mathbf{r}} = \{ z \in \mathsf{Z}; \, \mathsf{d}(z, \mathsf{Y}) \leqslant \mathsf{r} \}$

be the r-neighborhoods of X and Y. Set

$$d_{H}(X, Y) = \inf \{r > 0; X \subset Y_{r} \text{ and } Y \subset X_{r} \}$$

The Hausdorff distance

Let X, Y be two subsets of the same metric space Z. Let

 $X_{\mathbf{r}} = \{ z \in \mathsf{Z}; d(z, \mathsf{X}) \leqslant \mathsf{r} \}, \qquad \mathsf{Y}_{\mathbf{r}} = \{ z \in \mathsf{Z}; d(z, \mathsf{Y}) \leqslant \mathsf{r} \}$

be the r-neighborhoods of X and Y. Set

 $d_{H}(X,Y) = \inf \{r > 0; X \subset Y_{r} \text{ and } Y \subset X_{r} \}.$

Let X, Y be two compact metric spaces.

Let X, Y be two compact metric spaces.

The Gromov–Hausdorff distance between X and Y is the smallest Hausdorff distance between all possible isometric embeddings of X and Y in a *same* metric space Z.

The Brownian tree

 $\wedge \rightarrow$ Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a compact metric space such that the convergence

$$\frac{\sigma}{2\sqrt{n}} \cdot \mathfrak{T}_{n} \quad \xrightarrow[n \to \infty]{(d)} \quad \mathfrak{T}_{\mathbb{e}},$$

holds in distribution in the space of compact metric spaces equiped with the Gromov–Hausdorff distance.

The Brownian tree

 \wedge Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a compact metric space such that the convergence

$$\frac{\sigma}{2\sqrt{n}} \cdot \mathfrak{T}_{n} \quad \xrightarrow[n \to \infty]{(d)} \quad \mathfrak{T}_{\mathbb{e}},$$

holds in distribution in the space of compact metric spaces equiped with the Gromov–Hausdorff distance.

Notation: for a metric space (Z, d) and a > 0, $a \cdot Z$ is the metric space $(Z, a \cdot d)$.

The Brownian tree

 \wedge Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a compact metric space such that the convergence

$$\frac{\sigma}{2\sqrt{n}} \cdot \mathfrak{T}_{n} \quad \xrightarrow[n \to \infty]{(d)} \quad \mathfrak{T}_{e},$$

holds in distribution in the space of compact metric spaces equiped with the Gromov–Hausdorff distance.

Notation: for a metric space (Z, d) and a > 0, $a \cdot Z$ is the metric space $(Z, a \cdot d)$.

The metric space \mathfrak{T}_{e} is called the *Brownian continuum random tree (CRT)*, and is coded by a Brownian excursion.

An approximation of a realization of a Brownian CRT

Scaling limits: infinite variance

When μ is critical and has infinite variance, scaling limits (for the Gromov–Hausdorff topology) exist under the assumption that μ is in the domain of attraction of a stable law.

Scaling limits: infinite variance

When μ is critical and has infinite variance, scaling limits (for the Gromov–Hausdorff topology) exist under the assumption that μ is in the domain of attraction of a stable law.

 $\Lambda \rightarrow$ This essentially means that $\mu(n) \simeq c/n^{\beta}$ (heavy tail behavior).

Scaling limits: infinite variance

When μ is critical and has infinite variance, scaling limits (for the Gromov–Hausdorff topology) exist under the assumption that μ is in the domain of attraction of a stable law.

 \wedge This essentially means that $\mu(n) \simeq c/n^{\beta}$ (heavy tail behavior).

 $\wedge \rightarrow$ Scaling limits are described use stable Lévy processes.

WHAT ABOUT NON-CRITICAL OFFSPRING DISTRIBUTIONS?

WHAT ABOUT NON-CRITICAL OFFSPRING DISTRIBUTIONS?

\wedge Why did Aldous consider only critical offspring distributions?

WHAT ABOUT NON-CRITICAL OFFSPRING DISTRIBUTIONS?

\wedge Why did Aldous consider only critical offspring distributions?

4. Because we condition on total population size, the distribution of \mathcal{T}_n is unchanged by replacing ξ with another distribution χ in the same exponential family

$$P(\xi = i) = c\theta^i P(\chi = i), \quad i \ge 0 \text{ for some } c, \theta.$$

Thus there is no essential loss of generality in considering only critical branching processes.

14

Let μ be a **subcritical** offspring distribution such that $\mu(n) \sim c/n^{1+\beta}$ with $\beta > 2$. Let \mathfrak{T}_n be a μ -Bienaymé tree conditioned on having n vertices.

Let μ be a **subcritical** offspring distribution such that $\mu(n) \sim c/n^{1+\beta}$ with $\beta > 2$. Let \mathfrak{T}_n be a μ -Bienaymé tree conditioned on having n vertices.

Let μ be a **subcritical** offspring distribution such that $\mu(n) \sim c/n^{1+\beta}$ with $\beta > 2$. Let \mathfrak{T}_n be a μ -Bienaymé tree conditioned on having n vertices.

Theorem (Jonsson & Stefánsson '11)

Let m be the mean of μ . Denote by $\Delta(\mathfrak{T}_n)$ the maximum degree of \mathfrak{T}_n . Then

$$\frac{\Delta(\mathbb{T}_n)}{n} \quad \xrightarrow[n \to \infty]{(\mathbb{P})} \quad 1-m.$$

Let μ be a **subcritical** offspring distribution such that $\mu(n) \sim c/n^{1+\beta}$ with $\beta > 2$. Let \mathfrak{T}_n be a μ -Bienaymé tree conditioned on having n vertices.

Theorem (Jonsson & Stefánsson '11)

Let m be the mean of μ . Denote by $\Delta(\mathfrak{T}_n)$ the maximum degree of \mathfrak{T}_n . Then

$$\frac{\Delta(\mathbb{T}_n)}{n} \quad \xrightarrow[n \to \infty]{(\mathbb{P})} \quad 1-m.$$

 \longrightarrow What is the order of magnitude of the second largest degree $\Delta^2(\mathfrak{T}_n)$?

Let μ be a **subcritical** offspring distribution such that $\mu(n) \sim c/n^{1+\beta}$ with $\beta > 2$. Let \mathcal{T}_n be a μ -Bienaymé tree conditioned on having n vertices.

Theorem (Jonsson & Stefánsson '11)

Let m be the mean of $\mu.$ Denote by $\Delta(\mathfrak{T}_n)$ the maximum degree of $\mathfrak{T}_n.$ Then

$$\frac{\Delta(\mathfrak{T}_{\mathfrak{n}})}{\mathfrak{n}} \quad \xrightarrow[\mathfrak{n}\to\infty]{} \quad 1-\mathfrak{m}.$$

 \wedge What is the order of magnitude of the second largest degree $\Delta^2(\mathfrak{T}_n)$?

Theorem (K. '15) For every u > 0,

$$\mathbb{P}\left(\frac{\Delta^2(\mathbb{T}_n)}{n^{1/\beta}}\leqslant u\right)\quad \underset{n\rightarrow\infty}{\longrightarrow}\quad \exp\left(-\frac{c}{\beta}\cdot\frac{1}{u^\beta}\right)$$

Let μ be a **subcritical** offspring distribution such that $\mu(n) \sim c/n^{1+\beta}$ with $\beta > 2$. Let \mathfrak{T}_n be a μ -Bienaymé tree conditioned on having n vertices.

Theorem (Jonsson & Stefánsson '11)

Let m be the mean of $\mu.$ Denote by $\Delta(\mathfrak{T}_n)$ the maximum degree of $\mathfrak{T}_n.$ Then

$$\frac{\Delta(\mathfrak{T}_{\mathfrak{n}})}{\mathfrak{n}} \quad \xrightarrow[\mathfrak{n}\to\infty]{} \quad 1-\mathfrak{m}.$$

Theorem (K. '15) For every u > 0,

$$\mathbb{P}\left(\frac{\Delta^2(\mathbb{T}_n)}{n^{1/\beta}}\leqslant \mathfrak{u}\right)\quad\underset{n\rightarrow\infty}{\longrightarrow}\quad \exp\left(-\frac{c}{\beta}\cdot\frac{1}{\mathfrak{u}^\beta}\right)$$

This is not true for any subcritical offspring distribution whose generating function has radius of convergence equal to 1 (even though there always is a local limit with a finite spine)!

Let μ be a **subcritical** offspring distribution such that $\mu(n) \sim c/n^{1+\beta}$ with $\beta > 2$. Let \mathfrak{T}_n be a μ -Bienaymé tree conditioned on having n vertices.

 \longrightarrow What is the height of \mathcal{T}_n ?

Let μ be a **subcritical** offspring distribution such that $\mu(n) \sim c/n^{1+\beta}$ with $\beta > 2$. Let \mathfrak{T}_n be a μ -Bienaymé tree conditioned on having n vertices.

 \bigwedge What is the height of \mathcal{T}_n ?

```
Theorem (K. '15)
```

We have

$$\frac{\text{Height}(\mathfrak{T}_{n})}{\ln(n)} \quad \xrightarrow[n \to \infty]{(\mathbb{P})} \quad \ln(1/m).$$

Let μ be a **subcritical** offspring distribution such that $\mu(n) \sim c/n^{1+\beta}$ with $\beta > 2$. Let \mathfrak{T}_n be a μ -Bienaymé tree conditioned on having n vertices.

 $\wedge \rightarrow$ Are there scaling limits?

Let μ be a **subcritical** offspring distribution such that $\mu(n) \sim c/n^{1+\beta}$ with $\beta > 2$. Let \mathfrak{T}_n be a μ -Bienaymé tree conditioned on having n vertices.

- \wedge Are there scaling limits?
- \wedge No, not for the Gromov–Hausdorff topology: the tree is too "bushy".

Let μ be a **subcritical** offspring distribution such that $\mu(n) \sim c/n^{1+\beta}$ with $\beta > 2$. Let \mathfrak{T}_n be a μ -Bienaymé tree conditioned on having n vertices.

- \wedge Are there scaling limits?
- \wedge No, not for the Gromov–Hausdorff topology: the tree is too "bushy".

