
401-4634-24L: Diffusion Models, Sampling and Stochastic Localization

Lecture 4 – Introduction to diffusion models
Lecturer: Yuansi Chen Spring 2024

Key concepts:

• Mixing of ULA. It was discussed in this lecture, but the notes were put into
Lecture 4, as it fits better there

• Two major categories of generative modeling.

• Score function, score estimation via score matching

• Langevin with estimated score

• Diffusion models with estimated score (just the idea)

The material of this lecture is based on [SE19].

4.1 Introduction

Starting from this lecture, we move to the second setting of sampling where the target
measure µ is given with a collection of N i.i.d. samples rather than its explicit form.

In other words, we have x1, . . . , xN
i.i.d.∼ µ, while µ is not given explicitly. This setting

is also called “generative modeling” in machine learning.
In 2021, Song and Ermon [SE19] categorized the existing generative modeling tech-

niques into two major categories

• Likelihood-based models, which directly models the distribution’s probability
density function via (approximate) maximum likelihood. That is, we model

µ(x) ∝ pθ(x),

where pθ(x) is the probability density parametrized by some parameter θ. We
learn θ by maximizing the log-likelihood of the data

max
θ

N∑
i=1

log pθ(xi). (4.1)

This category includes autoregressive models, normalizing flow models, energy-
based models, and variational auto-encoders (VAEs). See reference in [SE19].
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• Implicit generative models, which implicitly represent the probability distri-
bution via a model of sampling process. That is, we say the target distribution is
close to a transformation of a Gaussian

g(Z), Z ∈ N (0, Im),

where g : Rm → Rn is a mapping to be learned. Then with a distance between
two measures Ddistributional(·, ·), we want to find g to minimize

Ddistributional(g(Z),
1

N

n∑
i=1

δxi
(·))

where 1
N

∑n
i=1 δxi

(·) denotes the empirical measure. The most prominent example
is generative adversarial networks (GANs) [GPAM+14], where new samples are
synthesized by transforming a random Gaussian vector with a neural network g.
The parameters of the neural network g are learned via minimizing the adversarial
loss between newly generated images and the empirical measure.

Song and Ermon pointed out that the existing models have significant limitations:
“Likelihood-based models either require strong restrictions on the model architecture
to ensure a tractable normalizing constant for likelihood computation, or must rely on
surrogate objectives to approximate maximum likelihood training. Implicit generative
models, on the other hand, often require adversarial training, which is notoriously
unstable and can lead to mode collapse”. The normalizing constant, instability and
mode collapse are already the main computational issues the sampling from explicit
density literature have been dealing with for many years.

Here we introduce another way to represent probability distributions that

• is an iterative sampling process, which does not rely on a good distance between
two measures,

• models the score function, rather than the likelihood, avoiding the normalizing
constant.

The key idea is to model the gradient of the log probability density function, a
quantity often known as the (Stein) score function. Such score-based models are not
required to have a tractable normalizing constant, and can be directly learned by score
matching.

4.2 Score function, score estimation via score match-

ing

If one tries to use likelihood models to model the target density with an unnormalized
density pθ(x) ∝ e−fθ(x), then in order to maximize the likelihood in Eq. (4.1) one
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needs to evaluate the normalizing constant Zθ :=
∫
e−fθ(x)dx, which is typically a

computationally intractable quantity for general fθ(x). An alternative is model the score
function instead of the density function, in order to avoid the difficulty of evaluating
normalizing constants.

Score function. The score function of a measure µ is defined as

x 7→ ∇ log µ(x).

Even if we only know µ up to a normalizing constant, µ ∝ e−f , we can compute the
score function without knowing the normalizing constant

∇ log µ(x) = ∇ log e−f = −∇f(x).

One may find the name “score function” not very intuitive, see its origin on Wikipedia.

Score estimation. To estimate the score function, it is natural to parametrize the
score function by a parameter θ via sθ(x), and try to minimize its distance to the true
score function over data sampled from the target measure:

min
θ

EX∼µ ∥∇ log µ(X)− sθ(X)∥22 . (4.2)

The above objective is in fact the Fisher divergence, between the target measure and
the measure induced by the score sθ, defined as

F(q, p) := EX∼q ∥∇ log q(X)−∇ log p(X)∥22 .

F is not a proper metric. However, it has other desirable properties of a discrepancy
measure, i.e., non-negative and equal zero if and only if the two densities are equal
q-almost everywhere. In general, it is difficult to evaluate the objective function in
Eq. (4.2) when µ is represented via N samples. ∇ log µ(x) is difficult to evaluate with
only data samples. For this, a family of methods called score matching [HD05] is
introduced.

Score matching. Score matching [HD05] is a way to transform the objective in
Eq. (4.2) so that it can be evaluated via only data samples and the score function
estimator sθ(·). We can rewrite the objective as follows

EX∼µ ∥∇ log µ(X)− sθ(X)∥22
= E ∥∇ log µ(X)∥22︸ ︷︷ ︸

does not depend on θ

−2E ⟨sθ(X),∇ log µ(X)⟩+ E ∥sθ(X)∥22 .
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The first term does not depend on θ. We rewrite the second term via integration by
parts

− E ⟨sθ(X),∇ log µ(X)⟩

= −
∫

⟨sθ(x),∇ log µ(x)⟩µ(x)dx

(i)
=

∫
∇ · sθ(x)µ(x)dx

= E∇ · sθ(X),

where ∇· is the divergence operator ∇ · F =
∑n

i=1
∂Fi

∂xi
. (i) uses integration by parts

where ∇ log µ(x)µ(x) integrates to µ(x), and the boundary term is 0 as long as µ has
fast decay as ∥x∥2 → ∞. Finally, the objective (4.2) becomes

min
θ

EX∼µ

[
∥sθ(X)∥22 + 2∇ · sθ(X)

]
. (4.3)

The above objective can be evaluated by replacing EX∼µ by the expectation over the
empirical measure

min
θ

1

N

N∑
i=1

[
∥sθ(xi)∥22 + 2∇ · sθ(xi)

]
.

By doing so, we avoided the knowledge of ∇ log µ(·). There is one more undesirable
feature of the above formulation: computing the divergence term ∇ · sθ(·) might not
be efficient for high dimensional data. Denoising score matching is introduced to avoid
the computation of ∇ · sθ(·).

Denoising score matching. Remark that the divergence term ∇ · sθ(·) appears
because we used integration by parts to make ∇ log µ disappear. It is possible to make
the divergence term disappear again via another integration by parts trick. Consider the
slightly perturbed measure µσ := µ ∗ N (0, σ2In), σ > 0, where ∗ denotes convolution.
The score function of the perturbed measure µσ can be estimated via the score matching
objective in Eq. (4.3). To get rid of the divergence term ∇ · sθ, observe that

EX∼µσ [∇ · sθ(X)]

=

∫ ∫
∇ · sθ(x+ σz)µ(x)γ(z)dxdz

=

∫ [∫
∇ · sθ(x+ σz)γ(z)dz

]
µ(x)dx

(i)
=

∫ [∫ 〈
1

σ
sθ(x+ σz), z

〉
γ(z)dz

]
µ(x)dx

= EX∼µ,Z∼N (0,σ2In)
1

σ
⟨sθ(X + σZ), Z⟩ ,
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where γ is the density of the standard Gaussian γ(x) = (2π)−
1
n exp(−∥x∥22 /2). (i)

applies integration by parts which integrates the divergence term and derives γ(·).
Then the score matching objective for µσ objective becomes

min
θ

EX∼µ,Z∼N (0,σ2In)

∥∥∥∥sθ(X + σZ) +
Z

σ

∥∥∥∥2

2

. (4.4)

The above objective can easily be replaced by its empirical counterpart, as X+σZ can
be obtained by perturbing each data point by adding a bit of Gaussian noise. To explain
the objective (4.4) in words, denoising score matching reduces the estimation of the score
of µσ to the following prediction problem: given the noisy samplesXi+σZi, i = 1, . . . , N ,
find sθ to predict the noise −Zi

σ
in small squared error loss.

However, it should be noted that the score of µσ is not exactly the score of µ. The
score of µσ provides a good estimate of µ when the noise level σ is small enough.

4.3 Langevin algorithms with estimated score

Once we have estimated the score function as explained in the previous section, we can
replace the negative gradient of the target measure µ in Langevin algorithms with the
estimated score. This gives us a way to approximately sample from the target measure
µ. Recall the unadjusted Langevin algorithm (ULA) for sampling µ ∝ e−f ,

Xk+1 = Xk − h∇f(Xk) +
√
2hξk,

where h > 0 is step-size and ξk is i.i.d. standard Gaussian noise. Replacing the −∇f(·)
with estimated score leads to the following.

Unadjusted Langevin algorithm with estimated score. It iteratively runs

Xk+1 = Xk + hsθ(X
k) +

√
2hξk,

where sθ is an estimate of score function log µ(·). As long as the score estimate is good
(sθ ≈ log µ(·)) and h is small, we expect that the law of µK to be close to µ for K large
enough.

While it sounds a plausible idea to run unadjusted Langevin algorithm with esti-
mated score for generative modeling, it faces two main challenges which we illustrate
via a toy example.

1. Estimated score function is inaccurate in low density regions. Say the
target measure in 2 dimension µ = 1

5
N ((−5,−5), I2) + 4

5
N ((5, 5), I2). With 1280 data

samples, [SE19] estimated the score function via score matching with a neural network
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and plotted the estimated score in the Figure 4.1. Unsurprisingly, the score estimation
is only accurate around the two modes of µ, and it is not reliable in low density regions.
This is mainly because the score estimation objective (4.2) focuses loss on where data
points are present.

Figure 4.1: Figure 2 in [SE19] for score estimation in toy data

2. Langevin algorithms mix slowly when faced a bottleneck. As we have seen
in previous lectures, when two modes of the data distribution are separated by low
density regions, it creates a bottleneck for the mixing of Langevin algorithm. When a
Langevin algorithm is initialized at one mode, it has a hard time going to the other
mode. Even if we can initialize at two modes together, it will not be able to correctly
recover the relative weights of these two modes in reasonable time in high dimension.

4.4 Annealed Langevin algorithms

The two challenges that Langevin algorithm with estimated score function faces have
different nature: the first score estimation in low density region problem is a statistical
estimation problem; while the second problem is a computational problem. However, in
the toy example, they are both cause by the low density regions of µ. A key observation
here is that once we smooth µ by convolving it with large Gaussian noise, µσ :=
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µ∗N (0, σ2In), then both problems are gone for the problem of sampling µσ, as illustrated
in Figure 4.2. However, to sample from µ, it is not enough to say that we can sample
from µσ with large enough noise σ. [SE19] proposed to improve Langevin algorithms
with estimated score by

1. perturbing the data using various levels of noise

2. estimating score and run Langevin algorithms, at all noise levels.

µ

µσ = µ ∗ N (0, σ2)

Figure 4.2. Once we convolve µ with a Gaussian, for µσ, the density in the highlighted
region becomes larger. What was a bottleneck for Langevin algorithms is no longer
one.

Inspired by the idea of annealing [KGJV83], the annealed Langevin algorithm is
proposed. Set L levels of noise from large to small, σ1, . . . , σL, and hL > 0

• For i from 1 to L run

– Set step-size hi = hLσ
2
i /σ

2
L.

– Run unadjusted Langevin algorithm for K steps

Xk+1 = Xk + hisθ(X
k, σi) +

√
2hiZ

k,

where Zk is independent standard Gaussian noise, and sθ(X
k, σi) is the estimated score

function for µ ∗ N (0, σ2
i In).

Intuitively, for small i (corresponding to large noise), the score estimation is easy
everywhere, the Langevin algorithm can go across modes easily and mixes fast for
µ ∗N (0, σ2

i In). As i increases, the target measure µ ∗N (0, σ2
i In) gets closer to the true

target measure µ. For large L and σL ≈ 0, we expect to sample µ ∗ N (0, σ2
LIn) which

is approximately to µ.
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4.5 Diffusion models

Does the annealed Langevin algorithm converges to the target measure as our intuition
suggest? How to set the noise levels σ1, . . . , σL in practice?

To answer the above questions, we first study the convergence property of the con-
tinuous analogue of the annealed Langevin algorithm by taking the limit L → ∞ and
the difference between σj+1 − σj → 0. This leads to the study of diffusion models.
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