
401-4634-24L: Diffusion Models, Sampling and Stochastic Localization

Lecture 5 – Diffusion model and its convergence
Lecturer: Yuansi Chen Spring 2024

Key concepts:

• Denoising diffusion probabilistic modeling (DDPM)

– Forward process + reverse process

– Score estimation in DDPM

– Discretization and implementation

• Convergence analysis

The material of this lecture is based on [CCL+22].

5.1 Denoising diffusion probabilistic modeling

In the previous lecture, we explain the idea of annealed Langevin algorithms with L
noise levels. When the number of noise levels tends to infinity, we essentially perturb
the data distribution with continuously growing levels of noise. It is natural to first
study the convergence of the continuous analogue of the annealed Langevin algorithms,
which is a continuous-time stochastic process.

In particular, we focus on the denoising diffusion probabilistic modeling from [SSDK+20].
It has a forward process which generates the perturbed data distribution, and a reverse
process which transform noise into new samples from µ.

To be consistent with the notation in [CCL+22], we use both q := µ and µ for the
target measure, and x1, . . . , xN for the i.i.d. samples from q.

Forward process. The forward process is specified via a stochastic differential equa-
tion (SDE).

dX̄t = −X̄tdt+
√
2dBt, X̄0 ∼ q, (5.1)

where (Bt)t≥0 is a standard Brownian motion in Rn. This type of process is also
called the Ornstein-Uhlenbeck (OU) process. In practice, one may consider the time-
rescaled OU process to adjust the amount of added noise as a function of time: dX̄t =
−g(t)2X̄tdt+

√
2g(t)dBt, with a positive smooth function g : R+ → R+. For simplicity,

we stick with Eq. (5.1) and the choice g = 1.

5-1



401-4634-24L Lecture 5 Spring 2024

The forward process has the interpretation of transforming samples from the data
distribution q into pure noise. Intuitively,

√
2dBt part of the SDE adds noise and the

−X̄tdt part adjusts the magnitude of X̄t so that its magnitude does not go to infinity.
We can have a closed-form solution of Eq. (5.1) as follows. Let Ȳt := etX̄t. Then

dȲt = etX̄tdt+ etdX̄t

(i)
= etX̄tdt+ et

[
−X̄tdt+

√
2dBt

]
=

√
2etdBt,

where (i) replaces dX̄t using Eq. (5.1). Then for any t ≥ 0, Ȳt is a Gaussian random
variable. It suffices to calculate its mean and variance. We have

E[Ȳt] = 0

E[ȲtȲ
⊤
t ] = 2E

[(∫ t

0

esdBs

)(∫ t

0

esdBs

)⊤]
(i)
= 2

∫ t

0

(e2s)dsIn

=
(
e2t − 1

)
.

(i) follows from Itô’s isometry. Hence, we may write

Ȳt = Ȳ0 +
(
e2t − 1

) 1
2 Z,

where Z ∼ N (0, In). And

X̄t = e−tX̄0 +
(
1− e−2t

) 1
2 Z. (5.2)

In words, X̄t is a linear combination of the measure q and noise, with weights (e−t, (1− e−2t)
1
2 )

that have their squares sum to 1.

Reverse process. If we reverse the forward process (5.1) in time, then we obtain a
process that transforms noise into samples from q, which is what we desire in generative
modeling. In general, suppose we have an SDE of the form

dX̄t = a(X̄t, t)dt+ btdBt.

Under mild conditions on the process, the process can be reversed, and the reverse
process also admits an SDE description. Fix terminal time T > 0, define the reverse
process

X̄←t := X̄T−t, for t ∈ [0, T ],
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then the process (X̄←t )t∈[0,T ] satisfies the following reverse SDE

dX̄←t = a←(X̄←t , t)dt+ bT−tdWt, X̄←0 ∼ qT ,

where Wt is the reversed Brownian motion, and the reverse drift satisfies

a(x, t) + a←(x, T − t) = btb
⊤
t ∇ log qt, where qt := law(X̄t).

For simplicity, we don’t distinguish the forward Brownian motion Bt and the reversed
Brownian motion Wt and as a consequence, we always state that the law of the X̄←t
defined through the reverse SDE is the same as that of X̄T−t instead of stating almost
sure equality.

Applying the above result to the forward process (5.1), we obtain the reverse process
in DDPM

dX̄←t =
[
X̄←t + 2∇ log qT−t(X̄

←
t )

]
dt+

√
2dBt, X̄←0 ∼ qT , (5.3)

where (Bt)t∈[0,T ] is the reversed Brownian motion. Note that ∇ log qt(·) is the score
function of the measure qt, which according to Eq. (5.2) has the law of a linear combi-
nation of q and Gaussian noise. Since q is not explicitly known and is only known via
its samples x1, . . . , xN , in order to implement the reverse process, we need to estimate
the score function at any time t ∈ [0, T ] via the samples.

5.1.1 Score estimation in DDPM

As we have explained in the previous lecture, one popular way of estimating score
function is via denoising score matching. We review the basics here. We want to
estimate the score function ∇ log qt by minimizing the Fisher divergence between the
density induced by the score function and qt,

min
st∈F

EX∼qt ∥st(X)−∇ log qt∥22 ,

where F is a function class where we search for st, which could be a parameterized class
of neural networks. The denoising score matching transforms the above objective to
the following equivalent problem, via smart applications of integration by parts,

min
st∈F

E
∥∥∥st(X̄t) +

(
1− e−2t

)− 1
2 Zt

∥∥∥2

2
(5.4)

where Zt ∼ N (0, In) independent of X̄0 and X̄t = e−tX̄0 + (1− e−2t)
1
2 Zt according to

Eq. (5.2). The main advantage of the formulation (5.4) is that it can be easily replaced
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with it empirical counterpart. This allows us to estimate the score on the samples
x1, . . . , xN .

min
st∈F

1

N

N∑
i=1

E
∥∥∥st(X̄(i)

t ) +
(
1− e−2t

)− 1
2 Z

(i)
t

∥∥∥2

2
, (5.5)

where Z
(i)
t is independent standard Gaussian noise, X̄

(i)
t can be obtained by adding

noise to xi. The above problem has the interpretation of predicting the added noise
Z

(i)
t from the noisy data X̄

(i)
t .

In practice, since the denoising score matching formulation (5.5) share some similar-
ity across all t ∈ [0, T ], it is common to use a shared neural network architecture [HJA20]

which takes input the noisy data X̄
(i)
t and a transformation of time t, and outputs the

noise Z
(i)
t . However, since the score functions at small t and large t are likely to be

very different, the statistical advantage of having a shared neural network architecture
other than its evident computational advantage is unclear.

5.1.2 Discretization and Implementation

First, in the score estimation phase, given samples x1, . . . , xN from q, we generate the
noisy samples and train a neural network to estimate the score functions at all time
levels via denoising score matching.

Second, we wish to run the reverse process to generate new samples starting from
noise. Once we have the score estimate st from denoising score matching, we can replace
∇ log qT−t in Eq. (5.3) by st. However, for a general st, it is still hard to integrate the
reverse process Eq. (5.3) in continuous time.

Let h > 0 be the step-size of the discretization. We discretize the reverse SDE as
follows, for t ∈ [kh, (k + 1)h],

dX←t = [X←t + 2sT−kh(X
←
kh)] dt+

√
2dBt. (5.6)

Note that we fixed the argument of sTkh
to be the value of X← at the beginning of the

segment X←kh, in order to result in a linear SDE which can be integrated in closed form.
Finally, ideally, we would like to run the reverse process starting from qT . However,

we do not have access to qT directly. Taking advantage of qT ≈ γn for large T , we
instead initialize the algorithm at X←0 ∼ γn, i.e., pure Gaussian noise.

Let pt := law(X←t ) denote the law at time t. Taking into account of the three
implementation details above, running the reverse SDE (5.6) using estimated score and
starting from γn to generate new samples from q would make three types of errors

1. Score estimation error. This error is mostly statistical in nature, depending on
the sample size N , the size of the function class F and its closeness to the true
score function.
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2. The discretization of the reverse process, which depends on the step-size h.

3. The error made at initialization, γn used instead of qT .

5.2 Convergence analysis

[CCL+22] analyzed the total variation distance between the law of generated samples
pT and the target measure q for large T , dTV (pT , q) as a function of the three types of
errors mentioned above, under the following three assumptions

1. (Lipschitz score). For any t ≥ 0, the score ∇ log qt is L-Lipschitz.

2. (Second moment bound). Assume that M2
2 := EX∼q ∥X∥22 < ∞.

3. (Score estimation error bound). For k = 1, . . . , K,

Eqkh ∥skh −∇ log qkh∥22 ≤ ϵ2score.

Theorem 5.2.1 (DDPM convergence in [CCL+22]). Under the three assumptions
above. Let pT be the output of the DDPM algorithm (5.6) at time T > 0, with h = T/K
and K the number of steps, suppose h ≲ 1/L, then

dTV (pT , q) ≲
√

KL(q ∥ γn) exp(−T )︸ ︷︷ ︸
convergence of forward process

+(L
√
nh+ LM2h)

√
T︸ ︷︷ ︸

discretization error

+ ϵscore
√
T︸ ︷︷ ︸

score estimation error

.

Remarks

1. Unlike previous results on Ball walk or Langevin algorithms, the above theorem
does not assume any type of “bottleneck” condition such as Poincaré inequality
or isoperimetric inequality. It means that DDPM can efficiently sample from
multi-modal target measures as long as the score estimation is good.

2. Even though the KL divergence term KL(q ∥ γn) between q and γn might be
large (even exponentially in dimension n), the contraction of the forward process
creates a exp(−T ) term which can make the first term small.

3. The discretization depends on the Lipschitz parameter of the score, which typi-
cally appears in discretization of continuous processes.
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Proof ideas.

• First, we can apply triangle inequality to isolate the distance between the outcome
of the discrete reverse process starting from γn and from qT .

• Second, it remains to compare the distance between the discrete reverse process
started from qT with estimated score and the continuous reverse process started
from qT with the true score. It reduces to the comparison of two stochastic
processes with slightly different drift terms. Applying Girsanov’s theorem is one
of the typical ways to control their KL divergence.

Proof. See the proof of Theorem 2 in [SSDK+20] for a complete proof. YC — TODO.
Will fill in the main proof steps soon
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