
401-4634-24L: Diffusion Models, Sampling and Stochastic Localization

Lecture 1 – Introduction
Lecturer: Yuansi Chen Spring 2024

Key concepts:

• Sampling: two settings

• Sampling in low dimension

• Curse of dimensionality

1.1 Introduction to sampling

We consider the problem of drawing a sample from a probability measure µ in n di-
mensions:

X ∼ µ(dx)

where µ is a probability measure on Rn. By an abuse of notation, we also use µ as its
density.

We are interested in two main settings.

1.1.1 Setting 1. µ is given in explicit form

In this setting, µ is given by an explicit mathematical expression, up to a normalization
constant. It means that we can have access to the probability ratio between two points
µ(x1)
µ(x2)

or the gradient of the logarithmic density ∇ log µ(x). We often encounter this
setting in approximate computation, Bayesian statistics and statistical physics.

Example 1 (Setting 1 in approximate computation). Given a bounded convex set K
on Rn specified with a membership oracle, where one can access whether any point x is
inside K or not, we would like to know the volume of the convex set.

[DF88, Kha89] show that under the membership oracle, exact volume computation
is NP-hard. Even when we are allowed to use a stronger oracle (the separation oracle,
where not only we know if any point x is inside K or not, when the point is outside,
we also know a hyperplane separating x and K), [Ele86] shows that every deterministic

algorithm has to query q times to make a relative error of
√

2n

q
.
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The situation is different when we are allowed to use randomized algorithms and
are satisfied with results that hold with high probability. The state-of-the-art algo-
rithm [JLLV21] for approximate volume computation achieves constant error with O(n3)
complexity. It builds upon a sampling algorithm to sample from the uniform distribution
over the convex set

µ(x) ∝ 1K(x).

Example 2 (Setting 1 in Bayesian linear regression). Consider a standard linear re-
gression problem, in which we observe N data points (xi, yi), i = 1, . . . , N , and we would
like to fit a linear model. In the linear model, we assume

yi = x⊤i β + ϵi,

where β ∈ Rp is the true parameter, and the ϵi are independent and identically dis-
tributed (i.i.d.) random variables ϵi ∼ N (0, σ2) (σ2 is given for simplicity). The maxi-
mum likelihood principle provides an estimate of β based on the data. Assuming xi are
fixed, the likelihood is

p(y | X, β) =
N∏
i=1

p(yi | xi, β)

∝
N∏
i=1

e−
(yi−x⊤i β)2

2σ2

where y is N-vector

y1...
yN

, X is the n× p design matrix with each row being x⊤i . Then

the maximum likelihood estimator (MLE) gives

β̂MLE = argmax
β

p(y | X, β).

The MLE approach is a frequentist approach and obtaining MLE is usually cast as an
optimization problem. In a Bayesian approach, the data are supplemented with a prior
belief about the true parameters. Then we are interested in quantify the uncertainty in
β estimation given the prior belief about the parameters (see e.g. [Hof09]). Applying
the Bayes rule, the posterior distribution over β given prior pprior(β) can be expressed
as

pposterior(β | y,X) ∝ p(y | X, β)pprior(β)

The main goal of Bayesian inference is to characterize the posterior distribution pposterior(β |
y,X), which is usually done by first sampling the posterior distribution.
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1.1.2 Setting 2. µ is given with a collection of i.i.d. samples

In this setting, we don’t know the explicit form of µ, but we are given a collection

of i.i.d. samples x1, . . . , xN
i.i.d.∼ µ. This setting is also called “generative modeling”

in machine learning. Perhaps the most popular problem of this kind nowadays is the
generative modeling of natural images.

Example 3 (Generative modeling of natural images). Given N cat pictures of size
200 × 200 pixels each, we are interested in drawing a new picture of a cat from the
underlying distribution. In this case, µ is a distribution supported on R200×200, and is
only given through N i.i.d. samples.

Take a look at what people can achieve in natural image generation in the past.
Compare with what we can do with DALL-E nowadays.

• Deep Belief Nets in 2006 [HOT06]

• Generative Adversarial Nets in 2014 [GPAM+14]

• Denoising Diffusion Probabilistic Models in 2020 [HJA20].

1.2 Reducing the problem in Setting 2 to Setting 1

via density estimation

Although not necessary, we can try to solve the problem in Setting 2 in two steps: first,
we estimate an explicit expression of µ from the i.i.d. samples x1, . . . , xN ; second, we
sample from the explicit expression of µ as we do in Setting 1.

The first step is also called density estimation in the statistics literature. One of the
simplest density estimation method is simply plotting a histogram of the N data points
with a fixed small bandwidth parameter. While we discuss several methods as we need,
providing a complete overview of density estimation is out of the scope. Interested
readers are referred to [Sco15] for an overview.

1.3 Both problems are not difficult in low dimension

Before we delve into sophisticated methods in modern sampling, we show that both the
density estimation problem and the sampling problem from an explicit density can be
solved via standard techniques in low dimension. By low dimension, we roughly mean
that the dimension is much smaller than the sample size, satisfying dimension n ≤ 5.

We go through a few simple methods for density estimation and sampling. The
purpose of the section is to remind us that standard techniques exist and work well if
we are just dealing with low dimensional problems.
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1.3.1 One dimensional density estimation and sampling

We observe N = 1000 i.i.d. samples x1, . . . , xN ∼ µ. µ is supported on R. Can we
estimate the density? Can we draw samples from µ?

Histogram or approximate the density by piece-wise constant functions

Let τ ∈ N be the number of bins. Create τ uniformly placed bins (Bi)i∈[τ ] in the range
of data points. Let

pi =

∑N
j=1 1xj∈Bi

N
.

We can draw a histogram with count frequencies pi.

Direct sampling via inverse CDF transform

Let h : R → [0, 1] be the cumulative density function (CDF) of µ and suppose the inverse
function h−1 is known. We can then sample X from µ via the following procedure:

1. Sample U from U [0, 1], the uniform distribution over [0, 1].

2. Output X = h−1(U).

It can be easily proved that X ∼ µ because for any t ∈ R we have that

P(X ≤ t) = P
(
h−1(U) ≤ t

)
= P(U ≤ h(t)) = h(t).

This method is exact and is highly efficient when h−1 can be easily computed. Addi-
tionally, if µ(x) > 0,∀x ∈ R, then h is increasing and h−1 always exists. It can also be
computed up to numerical errors via the bisection method.

As an example, in the case where µ is a histogram with τ -bins of probability pi.
The inverse CDF transform sampling works as follows

• From the probabilities p1, . . . , pτ , compute the cumulative distribution

Fi =
i∑

k=1

pi

for all i ∈ [τ ]

• Draw a uniform random number U ∼ [0, 1]

• Get the smallest i such that U ≤ Fi. Return any number in the bin Bi.
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1.3.2 Low-dimension density estimation and sampling

For n ≥ 2 but small, histogram still works. More generally, if one wants a smooth
density, kernel density estimation is often used.

Kernel density estimation

The density function µ at a point x can be represented as

µ(x) = lim
h→0

1

2h
PX∼µ(x− h < X ≤ x+ h).

We can replace this probability with its numerical estimate

1

N

N∑
i=1

1x−h<xi≤x+h.

It results in the estimator

µ̂(x) =
1

Nh

n∑
i=1

w

(
x− xi
h

)
,

where w is the weight function

w(x) =

{
1/2 if |x| ≤ 1,

0 otherwise .

In general, we don’t have pick this weight function, we can use a smoother kernel
function K(·). Then we have the definition of the kernel density estimator

µ̂(x) =
1

Nh

N∑
i=1

K

(
x− xi
h

)
,

K(x) ≥ 0,

∫ ∞

−∞
K(x) = 1.

One popular choice is the Gaussian kernel

K(u) =
1√
2π
e−

u2

2 .

The above idea can be extended to multivariate data by simply switching to multi-
variate kernel functions. It takes the form

µ̂multi(x) =
1

Nhn

N∑
i=1

K

(
x− xi
h

)
.
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The multivariate Gaussian kernel is

K(u) =
1

(2π)n/2
exp

(
−1

2
u⊤u

)
.

Sampling from µ̂multi is not difficult as it is a mixture of simple distributions. We
can first draw an index uniformly from {1, 2, . . . , N} and then draw from a simple dis-
tribution specified by the kernel function. In general, the sampling of low-dimensional
density can be done via rejection sampling.

Rejection sampling

We want to sample from µ on Rn (with access to unnormalized density µ̃). Suppose
we can sample from an easier measure ν (e.g. uniform on a cube or Gaussian). Let ν̃
be an unnormalized version of ν such that ν̃ ≥ µ̃. ν̃ is also called an upper envelope of
m̃u. Then repeat until acceptance:

1. Draw X ∼ ν

2. Accept X with probability µ̃(X)
ν̃(X)

We claim that the output of rejection sampling is a sample drawn exactly from µ. Also,
the number of samples drawn from ν until a sample is accepted follows a geometric
distribution with mean Zµ/Zν , where Zν :=

∫
ν̃ and Zµ :=

∫
µ̃.

To show that the output X of rejection sampling is drawn exactly according to µ,

let (Ui)
∞
i=1

i.i.d.∼ uniform [0, 1] and (Xi)
∞
i=1

i.i.d.∼ ν be independent. Then, for any event
A,

P(X ∈ A) =
∞∑
τ=0

P
(
Xτ+1 ∈ A,Ui >

µ̃ (Xi)

ν̃ (Xi)
, ∀i ∈ [τ ], Uτ+1 ≤

µ̃ (Xτ+1)

ν̃ (Xτ+1)

)
=

∞∑
τ=0

P
(
Xτ+1 ∈ A,Uτ+1 ≤

µ̃ (Xτ+1)

ν̃ (Xτ+1)

)
P
(
U1 >

µ̃ (X1)

ν̃ (X1)

)τ

=
∞∑
τ=0

(∫
A

µ̃

ν̃
dν

)(∫ (
1− µ̃

ν̃

)
dν

)τ

=
Zµ

Zν

µ(A)
∞∑
τ=0

(
1− Zµ

Zν

)τ

= µ(A).

Rejection sampling provides an exact sampling algorithm is one is willing to wait for
the number of steps that follows a geometric distribution. However, in practice, if one
has to truncate the number of steps to a finite number due to a computational time
budget, we would only get approximate sampling.
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1.4 Curse of dimensionality

The curse of dimensionality can exhibit in both the density estimation problem and
the sampling problem from an explicit density. In the former case, the curse of dimen-
sionality happens when the data size N needs to be at least 2n in order to estimate the
density with a constant error. In the later case, the curse of dimensionality happens
when the sampling algorithm takes at least 2n computational time in order to produce
a sample close to µ.

1.4.1 Curse of dimensionality in density estimation

In practice, multivariate kernel density estimation is often restricted to dimension n ≤ 5.
The reason is, that a higher dimensional space will be only very sparsely populated by
data points. Or in other words, there will be only very few neighboring data points to
any value x in a higher dimensional space, unless the sample size is extremely large.

More specifically, we can recall the classical minimax bounds for density estimation
(see e.g. [Tsy09] or Yihong Wu’s lecture notes). We say a probability density function
(pdf) f belongs to Pβ with a smooth parameter β > 0 if

• f is a pdf on [0, 1]n and is upper bounded by a constant, say, 2.

• f (m) is α-Hölder continuous, i.e.∣∣f (m)(x)− f (m)(y)
∣∣ ≤ |x− y|α ,∀x, y ∈ [0, 1]n,

where α ∈ (0, 1],m ∈ N, and β = α +m.

For example, when β = 1, P1 is simply the set of pdfs which are Lipschitz and bounded
by 2.

Theorem 1.4.1 (Minimax risk lower bound on density estimation). Given N i.i.d.
samples x1, . . . , xN from a pdf f ∈ Pβ, the minimax risk of an estimation f̂ of f under

the quadratic loss function ℓ(f̂ , f) :=
∥∥∥f̂ − f

∥∥∥2

2
=

∫
[0,1]n

(f(x)− f̂(x))2dx satisfies

inf
f̂

sup
f∈Pβ

∥∥∥f̂ − f
∥∥∥2

2
≳ N− 2β

n+β .

The infimum is taken over all estimators f̂ built on the data x1, . . . , xN .

In words, for β = 1, the number of data points N needs to be as large as 2n+1 in
order to achieve a quadratic loss of order 1

4
.

Proving the above theorem is out of scope of this course. We present an intuitive
proof only for β = 1. For each data point, draw a small cube with width δ centered

1-7

http://www.stat.yale.edu/~yw562/teaching/598/lec17.pdf


401-4634-24L Lecture 1 Spring 2024

around it, with 0 < δ ≪ 1. Choose δ such that 1/4 ≤ Nδn ≤ 1/2. Then the N cubes
centered around N data points cover at most 1/2 of the total volume. In the place
where it is not covered, any point is at least δ/2 away from a data point. We don’t
have any information the true pdf f except the information from its nearest data point
via the Lipschitz assumption.

|f(x)− f(y)| ≤ |x− y| .

By designing f adversarially, we make an error of δ/2 ∗ 2 for any x in the part which is
not covered. Hence, the minimax risk is lower bounded as

inf
f̂

sup
f∈Pβ

∥∥∥f̂ − f
∥∥∥2

2
≳ δ2

1

2

(i)

≳ N− 2
n ,

where (i) uses the bound 1/4 ≤ Nδn. The bound is loose when compared to N− 2β
n+β

after plugging in β = 1 but also illustrates the curse of dimensionality.

δ

A

Figure 1.1. Illustration of the partition of the unit cube. Each smaller cube is of
width δ. Each blue point represents a data point. A is the space which is not covered.
In A, since any data point is at least δ

2 away, the error we make inside A is of order
δ/2 ∗ 2.

1.4.2 Curse of dimensionality in rejection sampling

In high dimension, the ratio Zν/Zµ will be very close to 0. Here is an example. Take the
unnormalized target density µ̃ = 1B2 , where B2 := {x ∈ Rn | ∥x∥2 ≤ 1} is the ℓ2-unit
ball in Rn. Take ν̃ = 1B∞ , where B∞ := {x ∈ Rn | ∥x∥∞ ≤ 1} is ℓ∞-unit ball. Since
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∥·∥2 ≥ ∥·∥∞, we verify that ν̃ is an upper envelope ν̃ ≥ µ̃. Calculate the ratio Zν/Zµ

via formula for the volume of an n-ball, we obtain

Zµ/Zν =

∫
µ̃∫
ν̃
=

2(2π)(n−1)/2

n!!

2n
≈ 1√

nπ

(πe
2n

)n/2

,

where the last approximation is done via Stirling’s approximation. As n grows, this
rate can be much smaller than 2−n. As a consequence, the rejecting sampling of µ via
ν takes at least 2n iterations.
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