DIFFERENTIAL CALCULUS

1. Compute the first derivative of

(a)
$$x^8 e^{-x^3} - x - 100$$
, (b) $\frac{\ln(\sin^2(x))}{\cos(x)}$, (c) $\arctan(\sqrt{x})$.

(Hint for (c): Set $\tan(y) = \sqrt{x}$ and differentiate with respect to x)

- 2. Compute the first derivative of the two functions
 - (a) $f(x) = e^{\sin(x^3 + \cos(x^2))}$, (b) $g(x) = \cos^2\left(\frac{x^3 + 1}{x^2 + 1}\right)$.
- 3. For which $x \in \mathbb{R}$ does the graph of $f : \mathbb{R} \to \mathbb{R}$ with

$$y = f(x) = e^{\sin x} \cdot e^{\cos x}$$

have horizontal tangents? These are tangents of the form t(x) = a with $a \in \mathbb{R}$.

4. What is the domain of the function of the function

$$h(x) = \ln(\ln(x))?$$

Compute the second derivative h''(x) = (h'(x))'. Does the function h have any inflection points (i.e. points where h'' changes sign)?

- 5. Use the definition of the derivative to
 - (a) differentiate x^3 ,
 - (b) prove the product rule (fg)' = f'g + fg'.
- 6. Find the derivative of x^{x} . (Hint: Rewrite the expression as $e^{\text{something}}$)
- 7. (Optional) Have a listen: https://www.youtube.com/watch?v=tSovvlCxUNs (You don't need to know German for this.)