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DIFFERENTIAL CALCULUS

1. (a) Can you see directly why this integral is 07
(b)

—1
/e” dz = 7677‘% + C.

3/2
/v5xdx—\/5/x1/2dx—\/5-2x3 + C.

=8

8
1
/ —dz =1In|z| =In8—In2 =1In4.
2 X =2

/dx:/ldx:x—i-C.
2. Recall the formula

[ 1)@= 1@ o) - [ £10)-g@ar

(a) For f(x) =In(sinzx) and ¢'(x) = cosz, we compute

cosxt .
-sinz dx

/cosa:ln(sin xz)dr =In(sinz) - sinz — /

=In(sinz) - sinx — sinz + C
=sinz - (In(sinz) — 1) + C.

sinx

(b) Set f(x) =z and ¢'(z) =

cos?

T
/ 5 dx—xtanx—/tanxdx
cos? ¢

=xtanz + In|cosz| + C.

(c) Set fi(z) = 23 and gh(x) = e%;

/91736“c dz = 23" — 3/x2e‘” dzx.
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T

Now integrate by parts again with fy(z) = 22 and g)(x) = €%;

/31’26”” dz = 22" — 2/3565” dz.

We also solve the last integral by parts with f5(z) = 2 and g¢4(x) = e%;

/xe””dx::ce””—/egcdz::xex—e’”—l—C’.

The final result is therefore
%" — 3x%e” 4 6re” — 6e” + C = e* (2 — 32> + 62 — 6) + C.
(d) Set f(z) =1In(2? +1) and ¢'(z) = 1;
/1n(.7c2 +1)de = /1 ‘In(z® + 1) dz
:xln(x2+1)—/x-2—xdx

22 +1

2
B 5 (x4+1)—1
:xln(x2+1)—2/l—x2+1dx

= zln(2® + 1) — 22 + 2arctan(z) + C.

(e) Proceed with f(x) =In(z) and ¢'(z) =

2
/:clnxdx—? ——/—dx

T
2
(f) For f(x) =sinz and ¢'(z) = sinxz;

[\

/SiIlQSL’dSL’: —sinxcosa:—l—/cos%:dx,

/sinzx—/coszxdx: —sinx cos x.

Since [ sin x + [ cos? xdax = x4 Cy, we can sum the latter two expressions
to conclude that

thus

1
/sianda: = 5(:)& —sinzcosz) + C.

Bonus: We have foﬂ/Q sin? zdr = fOW/Q cos? xdz (since cos(x) = sin(z + m/2)),
and adding these give 7/2 by the identity sin?z + cos?x = 1. Thus, we have
foﬂ/ ®sin® zdz = 7 /4. (Alternatively, we can use the half-angle formula.)
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3.

(a) The two graphs intersect when f(z) = g(x):
4o +22° — 50 —2=22" —x — 2
simplifies to
(r+Dzx(x—1)=0,
and we therefore deduce that x1 = —1, 25 = 0,23 = 1.

(b)
/ (f(z) — g(2)) de = /1 (40" — A7) da

1
r=1

=zt — 227

r=—1

= 0.

(c) Where the graph of f is above g, integrate f(z)—g(x). Otherwise, integrate
g(x) — f(z). The area A of the shaded region is therefore

A= / (f(2) - gla)) dz + / (9(a) — f(2)) da

-1

0 1
= / (42° — 4z) da + / (4o — 42°) da
-1 0
=0 =1
=2

=0

=gt — 222 +22° —

r=-—1

4. Consider a value x € (0,1) where f(z) # 0; assume WLOG that f(z) = ¢ > 0.

Take a small interval [a, b] around this point where f(z) > ¢/2 (this is possible,
by continuity!) and a function g(z) which is zero on [0,a| and [b, 1] but pos-
itive inside (a,b) and greater than 1 on some interval (¢,d) where a < ¢ and
d < b (think why such a function exists!). Then, the integral fol f(x)g(z)dx =
fabf(x)g(x)dx > fcdf(x)g(x)dx > fcd ¢/2 - 1dx > 0, a contradiction. A similar
argument deals with the cases x =0, 1.

Remember that

d [
— f@)dt = f(h(z)) - h'(z) = f(g(2)) - ¢'(x)
dz Jo()
by the chain rule and the second fundamental theorem of calculus. In particular,

_ 2sin(2z) sinz

f'(x)

Local extrema occurs in points x for which f’(x) = 0, namely when sin 2z = sin z.
By the double angle formula, sin 2z = 2sin z cos x, thus the above condition is
satisfied for sinx = 0, or for cosz = % In our range, this occurs when z = 7, or

xr = 3-

Using the second derivative test, we see that f”(r) > 0, and f”(%) < 0, thus
only x = Z gives a local maximum.

2x T
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