1.1. Wahrheitstafel

Füllen Sie die folgende Wahrheitstafel für den Ausdruck

$$(A \to B) \land (A \lor C)$$

aus.

A	В	C	$(A \to B) \land (A \lor C)$
\overline{W}	W	W	
\overline{W}	W	F	
\overline{W}	F	W	
\overline{W}	F	F	
F	W	W	
\overline{F}	W	F	
\overline{F}	F	W	
\overline{F}	F	F	

1.2. Induktion

Beweisen Sie per Induktion die folgenden Aussagen für alle $n \in \mathbb{N}$:

(a)
$$\sum_{i=1}^{n} 2^{i-1} = 2^n - 1$$

(b)
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n\cdot (n+1)} = \frac{n}{n+1}$$

(c)
$$n < 2^n$$

1.3. Bijektivität

Zeigen Sie, dass die Funktion:

$$f: \mathbb{R} \to (-1, 1), \quad f(x) := \frac{x}{1 + |x|},$$

bijektiv ist.

1.4. Funktionen

Gegeben seien Abbildungen $f: X \to Y$ und $g: Y \to Z$. Zeigen Sie:

- (a) Wenn f und g surjektiv sind, so ist auch $g \circ f$ surjektiv.
- (b) Wenn f und g injektiv sind, so ist auch $g \circ f$ injektiv.

- (c) Wenn $g \circ f$ surjektiv ist, so ist auch g surjektiv.
- (d) Wenn $g \circ f$ injektiv ist, so ist auch f injektiv.
- (e) Zeigen Sie, dass folgende Aussage nicht korrekt ist (d.h. finden Sie ein Gegenbeispiel): Wenn g surjektiv ist, so ist auch $g \circ f$ surjektiv.
- (f) Zeigen Sie, dass folgende Aussage nicht korrekt ist (d.h. finden Sie ein Gegenbeispiel): Wenn f injektiv ist, so ist auch $g \circ f$ injektiv.